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Abstract

An important part of modern computer game development is giving players
the impression that non-player characters are behaving rationally. This is the
responsibility of the game AI programmer and the game designer. The game
AI programmer implements the platform which enable non-player characters to
act within a game. The game designer designs the behavior of the non-player
characters to fit the gameplay to increase the overall entertainment value of the
game.

There are many practical issues related to these tasks. The game AI pro-
grammer must determine which technique has the properties needed for being
able to achieve the desired behavior, implement it and make it available to the
game designer through a suitable tool. The game designer must then use the
tool to design and test the behavior. However, most game AI techniques are
unsatisfactory and the tools for game designers are crude and troublesome to use.

We propose to use the novel behavior tree game AI technique to create a
framework for improving the workflow of both the game AI programmer and
the game designer as well as the interplay between them. The framework will
provide the game AI programmer with an interface for conveniently exposing
behavior from the game world in a modular and data-driven fashion. The process
of designing behavior is made easier by a behavior designing tool emphasizing
accessibility and an intuitive workflow. The tool is an integration of the game
under development into a specialized behavior tree editor via the framework.
Combining these components improves the usability and testability of the overall
system.

Using the Unity game development tool and the Ext JS JavaScript library
we have implemented a web-based tool that presents a novel approach for imple-
menting and designing behavior for non-player character in games. We argue that
this tool would be useful in the development of many different types of games.
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Resumé

En vigtig del af udviklingen af et moderne spil er at give spilleren indtryk
af at figurerne i spillet opfører sig rationelt. Denne opgave tilfalder spillets AI-
programmør og spildesigneren. Spil-AI-programmøren implementerer platformen
der tillader figurerne at handle i spillet. Spildesigneren designer figurernes opførsel
s̊a den passer til gameplayet og øger spillets underholdningsværdi.

Der er mange praktiske problemer vedrørende disse opgaver. Spil-AI-program-
møren skal bestemme hvilken teknik der har de egenskaber der er nødvendige for
at kunne opn̊a den ønskede opførsel, implementere den og gøre den tilgængelig
for spildesigneren igennem et passende værktøj. Spildesigneren skal s̊a bruge
værktøjet til at designe og teste opførslen. De fleste teknikker for AI i spil
er dog utilstrækkelige og værktøjerne som spildesignerne bruger er primitive og
besværlige at anvende.

Vi foresl̊ar at anvende den nye behavior tree spil-AI teknik til at opbygge et
skelet der kan forbedre arbejdsforløbet for b̊ade spil-AI-programmøren og spilde-
signeren og samspillet imellem dem. Skelettet vil stille et interface til r̊adighed for
spil-AI-programmøren der gør det bekvemt at blotlægge opførsel fra spilverdenen
p̊a en modulær og data-dreven m̊ade. Arbejdsforløbet med at designe opførsel er
gjort lettere og mere intuitivt af et lettilgængeligt værktøj til at designe opførsel.
Værktøjet er en integrering af spillet under udvikling ind i et specialiseret behav-
ior tree redigeringsværktøj igennem et bekvemt skelet. Kombinationen af disse
komponenter øger anvendeligheden og testbarheden af det samlede system.

Ved at anvende spiludviklingsværktøjet Unity og JavaScript-biblioteket Ext
JS har vi implementeret et web-baseret værktøj der præsenterer en ny tilgang til
at implementere og designe opførsel for figurer i spil. Vi argumenterer for at dette
værktøj ville være nyttigt i udviklingen af mange forskellige typer spil.
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Chapter 1
Introduction

In this section we will outline the aims of the thesis. We will start by motivating the reasons
for our choice of problem domain. We will then describe the concrete problems we will
investigate and the methods we have chosen for doing so.

1.1 Motivation

The very first computer games were released in the 1950s and 1960s, [64]. Since then, there
has been a tremendous increase in the hardware capabilities of gaming systems and overall
improvements in the software technologies used to create games. These advancements have
lead to increasingly realistic games. They have also brought with them an enormous incline
in the complexity of developing a computer game:

“With the ever-increasing processing and graphical capabilities of
computers and console products, along with an increase in user
expectations, game design moved beyond the scope of a single de-
veloper to produce a marketable game in a reasonable time, [61] ”

Today, the game industry is big business. Even bigger than the movie industry, [61]. Now
most commercial games are the result of years of development by large development teams,
[70]. In the larger development teams each developer has a specific role in the development.
Developing a computer game requires producers, writers, programmers, artists, designers,
testers and many others.

Most development teams have developers dedicated to creating a platform for artificial

intelligence (abbreviated AI) in the game. Such a platform is often called the game AI of artificial intelligence

AI

game AI

the game and the developers responsible for implementing and maintaining it are called game

AI programmers. The game AI platform is concerned with the behavior of non-player

game AI programmers
characters (abbreviated NPCs) in the game. Non-player characters are all the characters

non-player characters

NPC

1
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in the game that are controlled by the computer rather than other players. Figure 1.1 shows
several NPCs in a combat situation in the game Half-Life 2: Episode Two from 2007 byHalf-Life 2: Episode

Two
Valve.

Figure 1.1: Ally and enemy NPCs engaged in combat in Half-Life 2: Episode Two, [52]

The game AI platform is used as a tool for making the NPCs act as if they were rational
beings. However, the game AI platform only handles the technical parts of the NPC behavior,
such as how to do something, e.g. how to move. The NPCs still need to be told what to
do, when to do it and precisely how it should be done. For instance, the NPC might know
how to move, but needs to be told when to move, where to go and whether to walk or run.
Choosing what an NPC should do next is called decision making and is the responsibilitydecision making

of the game AI designer, or simply game designer. The goal for the game designer is togame AI designer

create NPCs that help to increase the entertainment value of the game.

There are many techniques for creating the game AI platform. The different techniques
all have strengths and weaknesses, but very few of them are well suited for aiding the game
designer in creating the behavior of the NPCs. Often custom tools are built by the devel-
opment teams specifically to aid the game designers in creating the desired behavior, [62].
Many tools are coupled so tightly with the game for which they are used, that the tools must
be almost completely rebuilt for the development of the next game. Additionally, many tools
have a high learning curve, are troublesome to use and lower the productivity of the game
designer, [62, sec. “Use”]. For game designers to be the most productive and creative, they
need intuitive tools that make it easy to design, modify and test behavior of NPCs.
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Games are increasingly judged by the quality of their game AI and NPC behavior on par
with the graphics, audio and story:

“The era of eye-catching graphics is approaching its peak, opening
the path to AI as one of the major ingredients for a successfully
commercial game, [72, p. 41] ”

In the game industry only the top 5% of the products make a profit, [61]. Having easily
accessible tools for creating and testing the behavior of NPCs might give the extra edge that
turns a game into a commercial success.

1.2 Problem description

It is often a troublesome process for the game designer to create the desired behavior of NPCs.
The two main causes lie with the game AI platform and the tools for creating behavior.

Often, a large part of the problem is the game AI platform provided by the game AI
programmer. The game AI platform may be insufficient for designing the desired behavior or
it may be inconvenient for the game designers to use. The process of designing behavior is an
interplay between the game AI programmer and the game designer. In general, it is hard for
the game AI programmers and game designers to agree on a common interface between the
game AI platform and the tools for creating behavior that satisfy the needs of both parties,
[42, p. 11].

As an example, game designers will often require a game AI platform that allows them to
create sequential behavior while at the same time being able to react quickly to new events
in the game. Likewise, game designers would like NPCs to be autonomous, i.e. to be able autonomous

to act on their own without being told what to do, while still allowing the game designers to
tailor every aspect of the behavior when needed.

It can be hard for the game AI programmer to find a game AI technique that makes it
possible to satisfy these requirements. Often, game AI programmers rely on the concept of
scripting, finite state machines or hierarchical finite state machines to create the scripting

finite state machines

hierarchical finite state
machines

game AI platform. Neither of these solutions are particularly intuitive nor suited for the
requirements of both the game AI programmers and the game designers, [23].

The tools the game designers use to design the behavior are often crude, cumbersome,
very user-unfriendly and with little or no built-in help, [62, sec. “Use”]. Also, they are often
coupled very tightly with the game for which they are used. This means that most of the tools
need to be rebuilt for each game, thereby not warranting big investments. Game designers are
often stuck with having to script all the behavior, a time consuming and sometimes difficult
approach. Alternatively, the tools that enable the game designers to design behavior may
not allow them to easily test the behavior thus lowering productivity.

In recent years, a novel approach for handling behavior, called behavior trees, has behavior trees

emerged. It has gained widespread popularity and recognition in the game industry, and has
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been used as the game AI platform in critically acclaimed games such as Halo 2 from 2004Halo 2

by Bungie Studios and Spore from 2008 by Maxis, [37], [35]. The behavior tree techniqueSpore

combines the strengths of several popular techniques, most notably scripting, finite state
machines and hierarchical finite state machines, [42, p. 334]. Unlike many other techniques,
the concepts behind the behavior tree technique are very simple and intuitive. As such, this
technique may be very well suited for both game AI programmers as well as game designers,
[23].

We would like to investigate if the novel behavior tree technique may be used to create
better and more intuitive tools for game designers to aid in creating the desired behavior of
NPCs. Giving game designers better suited tools will increase the quality of the behavior of
the NPCs, thereby increasing the overall quality of the games.

1.3 Method

We will try to make it easier for game designers to design the desired behavior of NPCs.
For that purpose, we have chosen to investigate some of the concrete issues outlined in the
previous section:

• First, we will make a survey of the most common and popular techniques for game
AI and try to distill the properties that are well suited for games. We have chosen to
investigate a specific technique called behavior trees, and will compare this techniques
to similar techniques. From this, we will determine if the behavior trees technique is
suitable for game AI programmers.

• Second, we will investigate how to create a more suitable tool for game designers.
The tool should allow game designers to easily and intuitively create, modify and test
the behavior of NPCs. For these purposes we propose to integrate the game under
development into this behavior design tool, combining the two systems and allowing
the game designer to directly test and interact with the game through the tool.

• Third, we want to investigate the practical implications of such a system on the work-
flow of the game AI programmer and the game designer. For this purpose, we will
create a game and a behavior design tool for designing and testing the behavior of the
NPCs. We will use the Unity game development tool to create the game system, theUnity

implementation of the behavior tree game AI technique and the interfacing framework.
For creating the tool for the game designers, we will create a rich web-based behavior
editor using the Ext JS JavaScript library.Ext JS

• Finally, we want to make the process of implementing and designing the desired behav-
ior more convenient for both the game AI programmers and the game designers. For
this purpose, we will design a framework to act as a general interface connecting the
game and the behavior design tool.

In addition to the framework, we will make the tool general enough to be used for
different games without having to modify these components.
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1.4 Typographical conventions

Certain typographical conventions are used throughout the thesis:

• The occurrence of a new keyword is highlighted in bold, e.g. Keyword. It is also listed Keyword

in the page margin and in the index.

• The first occurrence of a reference to a game is followed by the name of the development
studio and the year of its release in square brackets, e.g. Pong [Atari Inc., 1972]

• Code is set in a typewriter font, e.g. true

• Class names are set in a dark blue typewriter font, e.g. Agent

• Nodes in behavior trees are set in a dark red typewriter font, e.g. Sequence

• Web addresses are marked in a violet typewriter font, e.g. www.google.com

• Spoken or exclaimed statements are set in quotes and italic style, e.g. “Hello world”

• References to pages, figures, tables and listings are marked in blue, e.g. section 2.7.2

• Citations are marked in red and enclosed in square brackets along with a page, section
or chapter reference whenever possible, e.g. [50, p. 123] or [50, sec. 1.2]

• Quotations are set in an italic font and shown in a floating figure between oversized
quotation marks. Any changes to the original quote is enclosed in brackets and in a
regular font. The quote is ended with a reference to the source of the quote. E.g.

“A quote that is relevant [in the context of game AI] and
insightful, [50, p. 123] ”

1.5 Related material

In this thesis we, among other things, discuss the design and implementation of the “Behavior
Tree Workbench” system. This system can be found at the web page at the following address:

• https://sites.google.com/site/BehaviorTreeEditor

The system is web-based and runs in all internet browsers on the Windows and Mac platforms.
The page also contains the source code and the resources for the system, an user guide and
a concrete game example.

The same material can also be found on the enclosed CD. Here, the Behavior Tree Work-
bench system is run by activating the link in the main directory or opening “code/edi-
tor/bte.html” in an internet browser.

www.google.com
https://sites.google.com/site/BehaviorTreeEditor
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Chapter 2
Game development and game AI

In this chapter we will look at the history of game development to see how games and the
development process has changed. We will then discuss what constitutes a game agent and
game environment and make definitions of both. Following this discussion, we will specify
the different types of agents and which environments they are suited for.

In order to get a firm understanding of the use of artificial intelligence in games is we
will relate it to classical academic artificial intelligence and illustrate using concrete game
examples. We will elaborate on the concept of game AI, how it is viewed by different interested
parties, how it is executed and what types of overall game AI approaches are used. Following
up on these approaches, we discuss many of the most common and popular techniques for
implementing, handling and designing game AI.

2.1 The process of developing a game

The first computer games as we know them appeared in the 1970’s. Games such as Pong Pong

[Atari Inc., 1972], Space Invaders [Taito Corporation, 1978] and Asteroids [Atari Inc., Space Invaders

Asteroids
1979] (figure 2.1 on the next page) gained widespread success on arcade machines, [64].
These games helped to bring video games into the mainstream.

In the 1970’s and 1980’s the process of developing a game was very different than today.
Many games were created by a single enthusiastic amateur programmer in a matter of months.
In fact, the development of a complete game could take as little as six weeks, [61, sec.
“Overview”]:

“In the early days of the industry, it was more common for a single
person to manage all of the roles needed to create a video game.
As platforms have become more complex and powerful in the type
of material they can present, larger teams have been needed to
generate all of the art, programming, cinematography, and more,

7
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(a) Pong, 1972 (b) Space Invaders, 1978 (c) Asteroids, 1979

Figure 2.1: Early but highly popular games that ran on arcade machines, [64]

[70] ”
Today, the game industry has become so big that in 2007 it exceeded the revenue of the

movie industry, [61, sec. “History”]. As the game productions have grown in size, so have the
development teams behind them. The members of the teams have also become increasingly
specialized. Previously, many programmers also created the art, story, gameplay and levels
of the games. Now there are numerous specialized positions for handling these different
aspects of the development. These feature artists, story writers, producers, game designers,
level designers, audio designers, tool programmers, engine programmers, quality assurance
personal, testers and many more. All of these different people must work together in a shared
effort to produce a modern computer game.

2.1.1 Tools for game development

As a consequence of the increased specialization, the tools used in the development process
have become more suited to specific purposes. For instance, level and game designers often
use a customized level editor and the artists, 3D modelers and animators use powerful image
editors and 3D modeling tools:

“Early in the history of the video game industry, game program-
ming tools were non-existent. This wasn’t a hindrance for the
types of games that could be created at the time, however. While
today a game like Pac-Man would most likely have levels gener-
ated with a level editor, in the industry’s infancy, such levels were
hard coded into the game’s source code, [62, sec. “History”] ”

Some tools are quite general-purpose and can be purchased off-the-shelf and used for
most games. Such tools include image, sound and 3D editors. Other tools are much more
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intertwined with the game under development. These tools are typically developed in-house
by tool programmers. The tools are developed by programmers and not by the end users,
e.g. the game designers. As a result the tools will often contain what the programmers think
the end users need, which might be quite different from what they actually need. In the best
case the tools merely lack some features that could be desired, [25]:

“Since facility is often the primary goal for tools, they may be very
user-unfriendly, with little or no built-in help, [62, sec. “Use”] ”

As a result, the non-programmers (e.g. game designers) having to use the tools might
find them cumbersome and slowing the content creation pipeline. Having powerful yet easily
accessible tools is vital when developing a game:

“Stable and reliable toolchains are a hot topic in game develop-
ment, as they ensure that the artists and designers can create the
content in an easy way, while allowing the content to be inserted
into the game without manual help, [42, p. 33] ”

Tools for designing behavior for non-player characters in games is no different, [66]. How
the NPCs should behave depend on the specific game. Suppose, for instance, that an evil-
minded monster is approaching a NPC in a game. A sensible course of action for that
character would be to flee. This assumes that the character is aware of the approaching
monster. That is, that the game designer is able to detect this occurrence within the tool
and make the character act accordingly. This again requires specific knowledge about the
character. If the character has no legs or other means of moving himself, fleeing from the
monster is an impossible task. Thus, the behavior of characters are often coupled so tightly
with the game that specialized tools need to be used.

2.1.2 Behavior in games

To be able to create interesting games, we need to be able to design the behavior of more
than non-player characters. An apple tree wouldn’t be considered a NPC1, for instance,
but it might still have some behavior associated with it. It may drop apples when they are
ripe or if the trunk is kicked. So, we need to broaden our definition of what we need to
design behavior for. In doing so, we turn to a well-known concept from computer science and
robotics, namely that of an ”agent“. More precisely, we need to model behavior for a ”game
agent“. A game agent is an agent in the setting of a game. A game agent models a single
entity in a game and have all the visible properties of that entity. This could be eyes, arms,

1That is, under the assumption that the game do not allow players to assume the role of various fruit trees
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legs, ability to move around etc.. It could also be apples in our example with the apple tree.
Additionally, game agents also have all the internal properties of the entities. In intelligent
entities this could be things such as a rational mind and a working memory. Although game
agents can be very different from game to game, some elements are persistent – the elements
that define a game agent.

In the following sections we will factor out the properties that agents share across all
contexts. In particular, we will derive a definition of a game agent that is independent of
game types and genres.

2.2 Definition of a game agent

In this section we will ask the question “What is an agent in a computer game?”. We willagent

use this discussion to create a definition of what constitutes a game agent.game agent

In order to motivate this discussion let us examine a concrete example: the agents in
Pac-Man [Namco, 1980]. Pac-Man (figure 2.2 on the facing page) is a very well-knownPac-Man

arcade game, still immensely popular to this day, [67]. The object of the game is to navigate
the players avatar — a yellow character named “Pac-Man” — around in a maze while eating
all the dots and avoiding the ghosts2 chasing him. The score of the player is increased for
each dot eaten and each level passed3 and getting the highest score is the ultimate goal of
the game.

Which components of Pac-Man can be classified as “agents”? The four ghosts “Blinky”,
“Pinky”, “Inky” and “Clyde” (figure 2.2(b)) are obvious candidates. The Pac-Man character
might also be classified as an agent even though Pac-Man is being controlled by the player.
What about the dots and the walls? They do not seem to have the properties required for
being an agent. Where, then, is the distinction? Primarily, the dots and walls are inanimate.
Had the dots been trying to flee once the player came near, the situation would have been
different. The dots would then be ascribed some instinctive properties of living things, e.g.
self preservation.

Considering the dots as being alive leads to the player empathizing with them, i.e. putting
himself in their place and sharing their emotions. In the case of the fleeing dots, the emotion
would be fear of being eaten. The obvious reaction would be to try to flee. However, what
if the dots were to react differently, e.g. by only fleeing slightly and then returning to their
original position regardless of the risk of being eaten? That reaction does not make sense
w.r.t. self preservation and a player would not be able to put himself in their place and would
thus loose empathy for them.

2Although originally called “monsters”, the enemies in Pac-Man became known as “ghosts” after the

game was ported to the Atari 2600. The reason was a bug that caused the enemies to constantly flicker, thus

appearing ghost-like, [42, p. 7]

3The right half of the 256th level of the game is rendered incorrectly due to an overflow bug, making the

level almost impossible to complete. However, this feat was apparently accomplished in 1982 by an 8-year

old boy, who supposedly received a letter of congratulations from U.S. President Ronald Reagan [67]
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(a) Game screen (b) North American title screen

Figure 2.2: Screens from the classic arcade game Pac-Man, [67]

From this discussion we can draw the following conclusions; agents are animated and react
to their surrounding in order to fulfill needs (e.g. stay alive) and archive goals (e.g. catch
Pac-Man). Additionally, the agents need to behave as expected for the player to consider
them realistic, i.e. maintain behavioral integrity, [37]. behavioral integrity

2.2.1 Agent environment

An important aspect of agents is the ability to interact with the environment (section 2.3 environment

on page 15). The environment is the surroundings that the agent operates within. If the
ghosts had no way of observing their environment or moving around to chase the player, they
might as well have been dead, inanimate objects. An agent needs to be able to get relevant
input from, as well as manipulating, its surroundings. The ghosts know the layout of the
maze, are aware of the location of the player and can maneuver through the maze to try to
catch him.

Pac-Man has a way of observing the environment through the eyes of the player and can
move in the maze by reacting to input from the player. Our definition of an agent does
not differ between how an agent is controlled. In the literature the notion and definition
of an agent vary. One widely recognized definition is by Russell and Norvig, [50]. In their
definition, an agent is “anything perceiving its environment through sensors and acting upon sensors

that environment through actuators”, [50, p. 32]. This is the overall definition we will use. actuators

The interaction between the environment and the agent is illustrated in figure 2.3 on the
following page. The environment and the agent are here represented as abstract entities that
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?

agent

percepts

sensors

actions

environment

actuators

Figure 2.3: Agent and environment interaction, [50, p. 32]

interact through percepts and actions. The sensors and actuators are components of the
agent.

The sensors provide mechanisms by which some aspects of the environment can be ob-
served, [50, p. 32]. Sensors for ghosts could be wall-detectors and player location sensors.
Sensors for Pac-Man could be movement input sensors. The sensory input is stimuli fromstimuli

the environment. The stimuli is analyzed and interpreted as a perception input or perceptpercept

(figure 2.4 on the next page4). The percepts are the agent’s abstract representation of that
particular stimuli. Returning to our example, the percept from the ghosts’ wall-detector
could be “walls to the north and east” and the percept from Pac-Man’s movement input
sensor could be “the ’up’-key is pressed”.

The actuators provide a way for the agent to interact with the environment, [50, p. 32].
Actuators could be motor devices to enable movement in the maze and a mouth for Pac-
Man to be able to eat the dots. The actuators are responsible for changing the state of the
environment. Whether such a change actually occurs is not necessarily observable by the
agent. Agents control their actuators by issuing commands, or more abstractly, by usingcommands

actions (figure 2.4 on the facing page5). An actuator acts according to a command whichactions

causes a change in the environment. This change is called the response. For instance, anresponse

agent might desire to move forward and sends this command to its motor actuators. The
motors will operate in order to comply with the request. The response will probably be that
the agent is moving. However, the agent could be stuck, in which case the response will either
be the observation that the agent tries to move, but cannot, or that it simply does nothing.
An agent that knows beforehand which responses its actions will cause is called omniscient.omniscient

Although omniscient agents may be possible in some virtual or closed environments (such as
Chess), omniscience is impossible in reality as unpredictable events may occur, [50, p. 36].

The percept sequence is the complete history of everything the agent has perceived.percept sequence

4In our terminology, the sensors do not receive percepts from the environment, but rather receives stimuli

that is interpreted as percepts

5In our terminology, the actuators do not act upon actions, but rather acts upon commands that is carried

out as actions
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Figure 2.4: Agent interacting with its environment with sensors and actuators, [50, p. 35]

From this, the agent function can be specified as an abstract mapping from percept se- agent function

quences to actions, i.e. f : P∗ → A, where P ∈ Percepts, A ∈ Actions. A concrete
implementation of an agent function is called an agent program, [50, p. 32-33, 44]. agent program

2.2.2 Agent behavior

The behavior of an agent can be specified as the response from the actions of the agent, as behavior

perceived from the environment. This behavior is what an observer will use to construct a
mental model of the agents knowledge of the environment and its mapping from percepts to
actions. This model is called the external state of the agent. There might be a discrepancy external state

between the perceived and actual state of the agent, i.e. its external and internal state. internal state

For instance, a ghost might appear to be fleeing if it moves away from Pac-Man while in fact
it has found another path that requires it to make a small detour. The illusion of intelligent
behavior is quickly broken if an observer cannot relate the actions of the agent to what the
observer believes is the internal state of the agent.

The desired behavior of an agent is defined by the intentionality of the designer rather intentionality

than of the agent itself, [40, p. 175]. The agent only does what it is designed to do, but
this may not be what the designer actually intended it to do. In other words, we want the
agent to do what is rational (i.e. what we intend it to do) in any given context. We call
such an agent a rational agent, [50, sec. 2.2]. However, for defining a rational agent, we rational agent

need to be able to specify what rational behavior actually constitutes for an agent. Rational
behavior is the behavior by which the agent maximizes its performance measure, [50, p. performance measure

35]. The performance measure of an agent is a criterion for measuring the success of an
agents behavior, i.e. the degree to which the behavior of the agent matches its intended
purpose. In the definition of Russell and Norvig, a rational agent is an agent that “should
select an action that is expected to maximize its performance measure, given the evidence
provided by the percept sequence and whatever built-in knowledge the agent has”, [50, p.
36].
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An important aspect of agents being able to act rationally is to be able to overcome
initially unknown problems. Agents able to act on their own are called autonomous, [50, p.autonomous

37-38]. For an agent to maximize its performance measure without autonomy, it would need
exhaustive knowledge of the environment or at least how to handle every possible scenario
that could occur in the environment. Suppose, for instance, that a certain route taken by
the ghost agents in Pac-Man is hardcoded. If the layout of the maze was to be changed to
invalidate that route, the agents would be incapable of finding an alternative route to their
destination. By using autonomous agents, they could determine a route to the destination
and, failing to use that route, determine an alternative route based on the new knowledge of
the layout of the maze.

2.2.3 Agent control

The concept of robot control refers to the way in which the percepts and actions (i.e. therobot control

agent function) for an agent (or robot) are coordinated6. In practice, there are four different
schemes of control, [40, p. 191]. They are defined as follows.

• Reactive control (or “don’t think, react”) uses a collection of concurrent stimuli-Reactive control

response pairs (i.e. percept-action pairs, page 12) to be able to react instantly to
changes in the environment.

• Deliberate control (or “think hard, then act”) uses sensory information and internalDeliberate control

knowledge to create a plan of action (section 2.7.4)

• Hybrid control (or “think and act independently, in parallel”) combines reactive andHybrid control

deliberate control schemes to be able to react to stimuli as well as planing ahead.

• Behavior-based control (or “think the way you act”) are similar to the hybrid controlBehavior-based control

scheme but uses a network of behaviors rather than a single planner

None of these approaches are better than others – which control scheme to use depends
entirely on the environment (section 2.3) that the agent operates within. All of the approaches
have strengths and weaknesses which will also be addressed in section 2.4.

When creating artificial behavior by coordinating lower-level actions, we often distinguish
between two different approaches; sequential control or reactive control, [40, p. 190].sequential control

Sequential control is used to accomplish some (complex) task by performing a sequence of
predetermined actions in order and may be considered a special case of deliberate control.

An agent architecture is a computing device with sensors and actuators. It can beagent architecture

either a physical embodiment or a purely virtual construct as in the case of software robots
or softbots. For instance, a game agent (section 2.1.2) is a softbot. An agent can be specifiedsoftbots

by its architecture and agent program, [50, p. 44].
We must acknowledge the fact that an agent cannot stand on its own. An agent is always

part of a setting. This setting defines the world the agent operates in. Having a clear

6These concepts are drawn from the field of robotics. Pioneers within the field such as Fred G. Martin,

Maja J. Matarić and Rodney Brooks have all been concerned with approaches to robot control, [40, ch. 5]
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definition of the world is essential for being able to define an agent that operates as desired.
In the next section we will create the definition a task environment.

2.3 Definition of a game task environment

In the preceding section we arrived at a definition of an agent in computer games. However,
an agent always operates within a task environment. A task environment can be thought task environment

of as “the problem” to which the agents are “the solution”. In this section we will take a
closer look at the properties of the task environment and how it affects the design of agents.
In the preceding section we discussed agents in the context of Pac-Man. Let us continue this
discussion by looking at the task environment in Pac-Man.

The environment can be thought of as the world excluding the agents. In other word,
the surroundings of the agents. In the world of Pac-Man, the entirety of the maze is visible
to both the player and the ghosts. The ghosts have complete information about the layout
of the maze and the whereabouts of the player. The maze itself does not change over time.
However, actions of the agents, such as moving around and eating dots, change the state of
the environment. The result of the agents actions depend on the state of the environment.
For instance, it is not safe to move Pac-Man to the left if there is a nearby ghost in that
direction. The environment changes in a deterministic way and is, in addition to Pac-Man,
only influenced by the ghosts. Although the behavior of the ghosts may seem rather random,
they are in fact strictly deterministic, [45, ch. 2]. A different set of properties would apply for
a version of Pac-Man that features a physics based environment (figure 2.5). In this version
the environment does not remain static but can be modified by the user. Hence, the agents
in this version of the game would have to be designed to consider a modifiable environment.

Figure 2.5: Screens from a non-commercial version of Pac-Man where the maze can be

manipulated using physics. The user can apply force to move the walls of the maze thus

radically changing the layout of the maze, [6]
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2.3.1 Properties of task environments

The description of the environment in Pac-Man does not tell us much unless we are aware
of what the various properties entail. The task environment has a number properties. One
property is the agents’ observability in the environment. If the state of the entire environment
is available at any given time, we say that the task environment is “fully observable” as is
the case in Pac-Man. Had the ghosts had a line of sight7 then the task environment would
have been only “partially observable” and the ghosts would have had to search the maze to
find Pac-Man. Important properties concerning task environments are the following, [50, p.
40-44].

• Fully observable vs. partially observableFully observable

partially observable If the complete state of the environment is available to the agent through its sensors
at any given time then the environment is fully observable. Otherwise it is partially
observable.

• Deterministic vs. stochastic (nondeterministic) vs. strategicDeterministic

stochastic

strategic

If the state of the environment is completely determined by the current state and
the actions performed by the agent, then the environment is deterministic. If the
environment has unpredictable events that change its state, it is stochastic. If the
environment is partially observable, a deterministic environment may seem stochastic
because only limited information is available. The properties are from the point-of-view
of the agent. If the environment is deterministic except for the actions of other agents,
then it is strategic.

• Episodic vs. sequential (nonepisodic)Episodic

sequential The environment is sequential if the order in which actions are performed can change the
outcome of those actions. If each action is atomic with the same outcome regardless of
ordering, it is episodic. Computer games are almost always sequential and the gameplay
evolves by building on top of previously performed actions by the player.

• Static vs. dynamic vs. semidynamicStatic

dynamic

semidynamic

If the environment can change while the agent is determining its next action then the
environment is dynamic, otherwise it is static. A turn-based game like Chess is clearly
static because nobody but the active player can change the state of the environment.
Some games – like Pac-Man – are harder to classify. From the viewpoint of the player
the game may seem dynamic. Whether the task environment is static or dynamic from
the viewpoint of the agents depend on the concrete implementation.

If the environment is static but the agent’s performance score changes over time the
environment is called semidynamic. This might be the case in games in which time is

7“Line of sight” is a notion of visibility where an agent can only observe it’s environment within a given

radius. Obstacles, such as walls, may cut off the line of sight, thus disallowing the agent to see behind

obstacles. See http://wikipedia.org/wiki/Line_of_sight_(gaming).

http://wikipedia.org/wiki/Line_of_sight_(gaming)
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a factor. If the ghosts in Pac-Man had a measure of success based on how quickly the
could catch Pac-Man, then this would be an example of a semidynamic environment.

• Discrete vs. continuous Discrete

continuousIf the state of the environment, passage of time and percepts and actions of the agent
can be though of as discrete or can be discretized without losing data, the environment
is discrete. Otherwise it is continuous.

• Single agent vs. multiagent Single agent

multiagentIf the environment have other entities which are best described as trying to maximize a
performance measure (section 2.2) that depend on other agents then the environment
is multiagent, otherwise it is single agent. If an agent maximizes its performance mea-
sure by minimizing the performance measure of other agents, then the environment is
a competitive multiagent environment. If it instead tries to maximize the perfor- competitive multiagent

mance measure of other agents, then the environment is a cooperative multiagent cooperative multiagent

environment.

Pac-Man is a clear example of a competitive multiagent system where the other agents
(the ghosts) maximize their performance measure by catching Pac-Man, thus minimiz-
ing his performance measure.

The Pac-Man task environment can now be defined much more formally. From the point-
of-view of the agents (i.e. Pac-Man and the ghosts) the environment is fully observable,
strategic, sequential, static, discrete and competitive multiagent. Hence, the agents in this
environment must be designed with these properties taken into consideration. For instance,
if we were to implement a secondary, computer-controlled, Pac-Man, we had to consider
that the environment may change. Specifically, the dots disappear as they are eaten by the
player-controlled Pac-Man. Thus the new agent frequently needs to update it’s view of the
world to keep it consistent.

2.3.2 Specifying task environments

As mentioned in section 2.1, we also need to know which sensors and actuators are available to
the agent. If an agent has no means of observing the world or moving about it cannot perform
the desired behavior. A task environment can be specified with a PEAS (Performance PEAS

measure, Environment, Actuators, Sensors) description, [50, p. 38]. In figure 2.6 on the
following page the PEAS description for the agents in Pac-Man is shown. The performance
measure of the ghosts is to catch Pac-Man such as to minimize his performance measure. On
the other hand, the performance measure of Pac-Man (i.e. the player) is to get the highest
score possible, achieved by eat dots, completing levels and avoiding ghosts to survive.

The task environment must always be carefully specified prior to designing an agent
to operate in that environment. If the task environment specification is incomplete, the
designer will lack information required for designing the agent to operate correctly in that
environment. In other words, it is not possible to formulate a suitable “solution” (the agent) if
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Agent Performance

Measure

Environment Actuators Sensors

Ghost Offer entertain-
ing gameplay

Maze Move in maze Maze overview,
player location

Pac-Man Get high score Maze Move in maze,
eat dot

Maze overview,
location of ghosts
and remaining
dots

Figure 2.6: PEAS description for the agents in Pac-Man

the “problem” (the environment) is not well-defined. Different types of agents are needed for
handling different types of environments. The next section will specify some of the primary
types of agents.

2.4 Types of agents

Agents come in great variety. Depending on the task environment and the purpose of the
agent different types of agents are applicable. For instance, if the environment is fully ob-
servable (section 2.3.1) then that agent do not need to maintain a model of the world – it
can simply read the state when required. Some agents are simple in terms of their agent
function. The resulting behavior need not be simple, however, and can appear complex to an
observer. This is the case with the Braitenberg vehicles (figure 2.7 on the next page) whose
agent function is simply a direct mapping between sensory input strength and motor speed.
Other agents may have a much more involved agent function that might include goals and
the ability to plan a way to achieve those goals.

It is convenient to be able to distinguish between different types, or classes, of agents.
Agents can be classified based on how they select their next action(s). Here we have four
basic types of agents from which all agents derive, [50, p. 46]. These are listed below, in
order of increasing complexity.

• Simple reflex agent is the simplest type of agent. It selects actions based solely onSimple reflex agent

the current percept. This agent only works as intended if the desired action can be
selected on the basis of the current percept. Therefore this type of agent is not suited
for partially observable environments, for instance. It is comparable to the reactive
control scheme (section 2.2.3).

• Model-based reflex agent is a type of agent that maintains an internal state to reflectModel-based reflex
agent

the state of partially observable environments. In a partially observable environment
not all state is available to the agent at any given time. To handle this problem, the
agent keeps track of its observations in the world (its percept sequence) to create a
knowledge base to act as a model of the world. This works as a memory bank formodel
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Figure 2.7: Examples of Braitenberg vehicles with two sensors both connected to a motor.

Vehicle a orients away from the source and vehicle b toward it. If the sensors were light

sensors the source would be a light emitter, [10, p. 9]

the agent, allowing the agent to recall the state of parts of the world it can no longer
observe. The world may have changed since the ”memories“ were created, but it is at
least able to make a qualified guess at the state.

• Goal-based agent is a type of agent that knows how the world evolves and how its Goal-based agent

action affect the world. It can then use search and planning to determine a sequence
of actions that will change the state of the environment into the desired one, i.e. the
goal state. Additionally, this knowledge about how the world evolves enables the agent
to make much more precise approximations of the unobservable state of the world. It
is comparable to the deliberate control scheme (section 2.2.3).

• Utility-based agent is an extension of the goal-based agent. A goal-based agent is Utility-based agent

either happy or unhappy with the state of the world. Utility-based agents use a utility

function to map a state (or sequence of states) onto a real number which describes utility function

the associated degree of happiness. This also allows for graceful handling of multiple or
conflicting goals. The agent tries to maximize the amount of happiness wrt. the utility
function.

Because action selection is the responsibility of the agent function, another view on the
types of agents is based on the components of the agent function (figure 2.8).

The agent function of the simple reflex agent consists simply of a function, f , mapping
between the input (percepts) and output (actions) (figure 2.8(a)). It is a stateless type of stateless

agent. The model-, goal- and utility-based agents are stateful types of agents. Their agent stateful

function use the internal state of the agent to create the mapping function (figure 2.8(b)).
Finally, there is the learning (or ”adaptive“) agent. This type of agent has an agent function
that can modify the variables of which it itself depends upon. This allows it to ”learn“ or
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(a) Stateless agent (b) Stateful agent (c) Learning/adaptive agent

Figure 2.8: Three different types of agents based on their agent function

”adapt“ based on the result of its percepts and actions in the world. This agent function is
illustrated in figure 2.8(c) and will be more closely examined in the next section.

2.4.1 Learning agents

All the basic types of agents can be extending to a learning agent (also called an adaptivelearning agent

agent). A learning agent is a type of agent that is able to change its agent function basedadaptive agent

on the perceived effects of performing actions in the environment. In effect, this can lead to
an agent that is able to learn how to adapt to its task environment. They can thus learn
to operate in initially unknown environments and become more competent than their initial
knowledge alone would have allowed.
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Figure 2.9: The elements of a learning agent, [50, p. 53]

A learning agent can be divided into four conceptual elements, as shown in figure 2.9.
In the terminology of learning agents, the performance element was what was previouslyperformance element

thought of as the entire agent, [50, p. 52]. That is, it is the previously static model for taking
in percepts and decides on actions. We need some means of manipulating the performance
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element based on the experiences of the agent. First, however, we need a measure of success
to be able to determine when the agent did something desirable and when it did something
undesirable. The element responsible for this is called the critic. The critic should be critic

thought of as an outside observer that is able to determine the results of the agents actions
in the environment. The critic needs to compare the observed results with the performance

standard (a fixed indicator on success) to determine how well the agent is doing. The performance standard

critic gives feedback to the learning element on how the agent is doing, and the learning learning element

element determines how to change the performance element in response. Finally, a learning
agent needs a problem generator in order to suggest actions that might lead to new and problem generator

informative experiences, [50, p. 52-53]. Without it, an agent may be stuck in a local maximum
of its potential, while the problem generator can help the agent achieve its global maximum
potential.

For concretizing the concepts, let us consider a simple example of a learning agent. Sup-
pose, for instance, that we need to create an agent to act as a small animal in a desert. We
might model this as a simple reflex agent, a model-based, goal-based or utility-based agent
(section 2.4). The choice of model is secondary and depends on the animal we would like the
agent to represent. Either way, we want to extend the model to a learning agent for handling
unforeseen changes in the environment such as drought, decease or the appearance of a new
predator. Our original agent model is the performance element of the corresponding learning
agent. The performance standard may state that eating, drinking, resting and staying alive
are good things that should receive a reward while starving, being thirsty and in pain are reward

bad things that should receive a penalty, [50, p. 54]. Over time, the critic would provide penalty

feedback to the learning agent based on the performance standard. For example, if the agent
does not drink enough, it will get penalties and the learning element will change the per-
formance element to make the agent more inclined to drink. Finally, the problem generator
could force the agent to explore a larger area, thus allowing it to find lakes large enough to
persist throughout a drought.

In the next section we will discuss how the classical, academic, artificial intelligence differs
from the artificial intelligence used in games.

2.5 Classical AI and game AI

Although the term ”artificial intelligence”8 was not coined until 1956 by John McCarthy it
is a field that has been studied – in one form or another – long before that, [50, p. 17]. The
historical background for classical, or academic, AI is vast. It spans several millennia and
research in a multitude of different fields of study, including philosophy, economics, biology,
mathematics, linguistics, computer science and more, [50, p. 5-16]. Each field has contributed
to the understanding of the field of AI. The field has been through patches of tremendous
growth as well as grave depressions.

8Russell and Norvig suggests that ”computational rationality“ might have been better suited, [50, p. 17]
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McCarthy defined artificial intelligence as ”the science and engineering of making intel-
ligent machines“, [56]. Since the dawn of AI, it has built on the idea of duplicating human
features like creativity, self-improvement, and use of language, [50, p. 18]. Computers are
much more adept than humans at handling operations such as arithmetic, searching and
sorting, while much worse at things such as face and speech recognition and natural lan-
guages, things which come naturally for humans, [42, p. 4]. AI has been applied to many
of such difficult problems in the hopes of gaining a better understanding of the nature of
thought and the mechanics of the human brain, [42, p. 4]. Take the problem in figure 2.10
for instance. This could be a typical question in an IQ-test and something most people
would be expected to solve quite easily. Programming a computer to solve this problem is
significantly harder. In 1968, Tom Evans successfully created a program, called Analogy,
that used artificial intelligence for solving problems like the one in figure 2.10, [50, p. 19].

is to as is to:

1 2 3 4 5

Figure 2.10: Example of a problem solved using AI, [50, p. 20]

In the artificial intelligence used in games, the focus is also on ”the science and engineering
of making intelligent machines“, though in this context the ”machines“ are virtual agents.
Game developers are also attempting to create agents who duplicate human features like
autonomy, creativity and self-improvement. However, very different means are used for trying
to achieve these features in the classical AI and in game AI. Game AI typically draws upon
existing methods from the field of artificial intelligence, but do so in order to produce the
illusion of intelligence in the behavior of the agents, [59]. That is, the main goal for game AI
is not to create intelligent agents, but to create agents which are perceived as intelligent by
the player:

“As long as the player has the illusion that a computer-controlled
character is doing something intelligent, it doesn’t matter what AI
(if any) was actually implemented to achieve this illusion, [39, p.
41] ”
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Artificial intelligence has been an integrated part of computer games for as long as they
have existed. Some of the very first computer games developed were Chess (in 1951) and
Checkers (in 1952) and they were the first applications of AI in games, [28], [59]. Their goal
of the player controlled by the AI was to solve the problem of choosing the best possible move
in a given situation, as was the goal of the opponent. These applications of AI in games are
actually more in the field of AI than in game AI. The primary reason hereof is that the AI
tries to win the game. The ultimate AI here, would be one that was able to win the game
each time, if possible.

The ultimate goal for a game AI is to provide entertaining gameplay. In a game of Chess,
in most cases it would not be considered entertaining gameplay to lose against a superior
player AI. However, most people will find it entertaining to be challenged by an AI of equal
skill and winning by outsmarting it. In other words, as opposed to many instances of the
classical AI, the goal in game AI is not to find optimal solutions to a given set of problems.

In the next section we will look at the concrete responsibilities and applications of game
AI.

2.6 Artificial intelligence in games

Since the dawn of computer and video games, they have included game artificial intelligence
in one form or another. The ghosts agents of Pac-Man are among the earliest examples of
game AI that used character-based behaviors to produce the illusion of intelligence, [59, sec.
“History”], [42, p. 19]. Although many concepts and methods in game AI are drawn from
the fields of AI and robotics, the approaches used to achieve the illusion of intelligence often
lies well outside these fields. In game AI the means for creating this illusion is secondary.
The primary concern is the illusion itself:

“Computer games are an application in which the perception of
intentionality is often more important than intentionality itself.
Players often attribute more intelligence to non-player characters
than is actually warranted. [38, p. 46] ”

2.6.1 Responsibilities of game AI

In games, the AI is usually responsible for guiding the behavior of the game agents. Behavior
is a broad term, however. In particular, the game AI in most modern games handles three
overall problem domains; movement, decision making and strategic reasoning, [42, sec. 1.2]. decision making

Movement is responsible for pathfinding in game levels (section 2.7.4) and providing tools for
believable locomotion, or steering, to move characters. Decision making is the process of steering

deciding on the next course of action, either as a reaction to stimuli or for achieving longer-
term goals. Strategic reason is used for creating elaborate plans for succeeding in complex
scenarios.
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Our focus on game AI is in particular on the decision making process. It is entirely
possible to have games in which neither movement nor strategic reasoning is required. The
game might have reactive agents, that is, simple reflex agents (section 2.4), who are invisible,
stationary or move in a trivial fashion (e.g. ghosts moving through walls). Decision making is
required for any agent that needs to decide on an action to perform given a percept sequences.
In other words, decision making is the process of creating a suitable agent function (section
2.2.1).

The decision making process is especially important in character-based AI in which the
agents have a physical manifestation in the game. Strategic reasoning is applicable when game
scenarios are so complex or highly sequential that tactical planning is needed for achieving
the goals.

2.6.2 Views on game AI

For game AI we have three interested parties; the game AI programmer, the game designer
and the player. Each of these roles has a different view on the game AI.

Initially in the process of developing the game AI, the interested party is the game AI
programmer. His concern lies with the infrastructure and the technical details of the AI. His
measure for a good game AI is one that provides a simple, effective and modular interface
for communicating with the game world and the editor tool used to create the behavior.

Secondly, we have the game designer whose responsibility is to create an interesting,
believable and intelligent behavior on top of the technical platform. The designers measure
for a good game AI is one that is highly autonomous, while providing full directability
whenever necessary for adding story-driven or custom behavior to the game. Further, this
behavior should be easy and intuitive to create with the game AI editor.

Finally, we have the end user – the player – whose measure of success is neither the techni-
cal underpinnings or the level of autonomy but simply that the game AI adds entertainment
value to the game.

2.6.3 Processing game AI

Games are typically processed in frames, where each frame represent a discreet (often static)frames

slice of time, ∆t. Many games have a frame rate at about 30 frames per second9 (FPS),frame rate

giving each frame a time slice of ∆t = 1
30 seconds ≈ 30 milliseconds. During a frame, the

processing loop need to poll for input, recalculate physics, game AI, geometry, lighting, etc.
and render the updated visual output to the screen.

Most game AI do not need to be updated every 30th milliseconds, however, so many
games choose only to process the game AI every n’th frame. Another often used approach

9However, the frame rate of games vary greatly. Some games (typically console games) use a fixed rate

between 30 and 60 FPS. Other games use a varying frame rate that may reach several hundred FPS on

sufficient hardware. Frame rates below 30 are generally frowned upon as it often gives the appearance of lag,

i.e. unsmooth transitions in the game, [58]
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for reducing the processing requirements of the game AI is to calculate the AI using a level-

of-detail (LOD) technique, [46, p. 7], [32, p. 294]. This can be used to scale down the detail level-of-detail

of the AI of agents which are not currently interesting to the player. That is, the AI can be
scaled down “if the player won’t notice the difference”, [32, p. 294]. Using this approach,
agents which are far away or completely out of sight may use only the simplest form of AI
and animation, if any.

Figure 2.11 presents one possible architecture for processing one frame of game AI. First,
for the AI to be computable, it needs information (i.e. percepts) from the world such that it
can decide on actions. As mentioned in the previous section, game AI has three major areas
of responsibility: strategy, decision making and movement. These need to be handled in AI
processing, as illustrated in the figure.

Figure 2.11: Model of how game AI may be structured in a game engine, [42, p. 9]

The game AI needs to plan a strategy for squad-based agents (if any), to have each
agent decide what to do next and to move those agents around if needed. At each step
of this processing, data from outside the AI module and the world representation may be
needed. This is often scripted behavior (section 2.7.5) or other types of resources from content
creation tools. Having the majority of content available as external resources is known as
data-driven development and is a requirement for modern game development [42, p. 361, data-driven

366-367]. Data-driven development eases the workflow between the game AI programmer,
who implement the AI processing, and the game designer, who create the custom behavior
that the game AI relies on. Following the processing of the game AI, the actions chosen and
executed need to be reflected as behavior in the game. This will often (as shown in figure
2.11) involve the animation or physics systems.

In section 2.7 and chapter 4 we will examine game AI from the point-of-view of the game
AI programmer and the game designer. The next section will highlight typical examples
of character-based AI in games and look at the techniques they have used. The following
section will focus on a different type of game AI called tactical AI. These two sections will
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provide an insight into the diversity of game AI.

2.6.4 Character-based game AI

Most game genres use the concept of a character-based AI agent, meaning that the agentscharacter-based AI

are represented as (some form of) characters within the game. That is, the agents actually
have a physical manifestation in the game as opposed to purely virtual agents, as we will see
in the next section. Having a manifestation of the agents in the game means that they can be
directly observed and special care is needed for their behavior to be perceived as intelligent.

Character-based agents appear in most action games as well as many first and third person
games. Examples include genres such as first-person shooters (FPS), role-playing gamesfirst-person shooters

role-playing games (RPG), racing, platform, sports and fighting games. A good example of a game utilizing
character-based AI is Half-Life [Valve, 1998]. Half-Life is a popular FPS action game, [52].

Half-Life
It was highly acclaimed for the realistic behavior of the ally and enemy agents but especially
that of enemy squads, [30, p. 212], [38, p. 46], [72, p. 42].

Figure 2.12: Marines using squad-based behavior in Half-Life, [44]

The agents’ sensory system allows them to hear and see nearby agents. They have an
emotional relation (e.g. fear, dislike or hate) to each type of agent to help determining how
to act when confronted with a certain type of agent.

The squads in Half-Life consist of marines with military weapons (figure 2.12) who com-
municate using walkie-talkies. In combat they utilize a “Kung-Fu”-style tactic in which only
a few squad members are actively attacking at the same time. Squad members not attacking
can be covering, reloading etc.. The enemies engaging in this behavior were perceived as be-
ing intelligent as they sought cover when they needed to reload and were replaced by another
who had been covering. This effect were amplified by the marines explicitly proclaiming their
intentions. When an enemy needed to reload he would yell “Reloading” and in confirmation
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hereof the enemy replacing him would yell “Cover me”, signifying that he would assume an
attacking position and needed cover fire, [38, p. 46].

The actual implementation of this behavior (section 2.7.2 on page 40) is much simpler
than the perceived behavior would suggest. This is a good example of emergent behavior emergent behavior

(2.7.1), where a number of simple behaviors interact in a manner that appears more complex
to an observer.

Figure 2.13: In-game screenshot of Halo 2, [63]

Another highly popular FPS game is Halo 2 [Bungie Studios, 2004] (figure 2.13). The en- Halo 2

emies in Halo 2 are modeled using a model-based reflex agent type (section 2.4) for achieving
a better illusion of human-like intelligence. The task environment of Halo 2 has been made
partially observable (section 2.3) for the agents and they continuously maintain a model of
the world, [37]. This allows players to outsmart the enemies by e.g. leading them to believe
that the player is hiding behind a rock when in fact he had crept away to attack the enemy
from behind. The end result was a more realistic appearance of the enemy as stated in the
following quote from a Halo 2 AI developer.

“Having this state information [...] distinct from the actual world-
state and gated by the actor’s perception filter (an actor [i.e.
agent] should not be able to see through walls, for example) al-
lows the two representations to occasionally diverge - thus the
actor can believe things that are not true, and we now enter the
realm of AI that can be tricked, confused, surprised, disappointed,
etc. [...] Giving AI an internal mental image of its world results
in interesting and more ”realistic” behavior, [37] ”

Having agents keep their own model of the world allows them to correlate it with e.g.
their perception sequence (section 2.2). This could be used to answer questions such as
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“have I already searched for enemy X at location Y ?”. Although the knowledge model in
Halo 2 is rudimentary, the game AI developers suggest that adding spatial, structural and
time relations to the model could remove many limitations, [37].

The Sims [Maxis, 2000] is a life-simulation game series that has achieved a tremendousThe Sims

amount of success10. The gameplay of the The Sims revolve around structuring the daily life
of virtual characters, the so-called “Sims”. The characters have needs and desires of their
own, such as the need for food, sleep and personal hygiene. The agents in The Sims are
comparable to utility-based agents (section 2.4) in that they attempt to fulfill their needs
and, if satisfied, attempt to satisfy their desires.

Figure 2.14: Collage of different agent behaviors in The Sims 3, [26]

The game has no winning condition and has been described as more of a toy than a game,
[69]. There is very strong emphasis on the agent-based game AI and that the Sims behave
in a life-like manner. It is in effect a demonstration of advanced goal driven game AI. If left
alone, the Sims will act on their own, taking care of basic needs such as eating when hungry
and socializing when lonely. It requires the intervention of the user only to ensure that the
Sim acts upon things that are not directly related to its needs such as cleaning, going to work
or arranging a party.

The Sims use a novel approach to handling complexity in a game with a vast number
of different objects that the characters can interact with. The technique is called smart

terrain (also known as smart objects) and works by “embedding intelligence“ into inani-smart terrain

smart objects mate objects. This often takes the form of directions on how to interact with that particular
object as well as what it provides and what it needs. Each object broadcasts (“advertises”)
which services it provides to the vicinity. Thus a refrigerator might advertise the message
“I contain food”. The food inside will advertise that it provides hunger satisfaction. Should

10The series has sold more that 125 million copies worldwide thus making it the best selling game franchise

of all time, [8]
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the agent choose to use the food, it will instruct him that “I need cooking” and the oven
advertises that “I cook food”, [71], [47], [15].

The smart terrain approach has several advantages. First, it allows the complexity to
be distributed across the environment rather than having the agent itself handle each type
of possible interaction. This helped to greatly reduce the complexity of the development of
the numerous expansion packs to The Sims series. The reason is that new objects could be
added painlessly, without the agents knowing about them, because the objects themselves
instructed the agents on what they provide and the protocols for interaction. Adding a new
object, e.g. a freezer, would thus only be a matter of having it advertise “I contain food” and
agents would be able to interact with it. Secondly, it allows the agents to interact with the
environment in a more realistic manner. A soldier might take advantage of a nearby crate
advertising “I offer cover”, [71].

2.6.5 Tactical game AI

As opposed to the physical manifestations of character-based agents, we have a type of virtual
agents often categorized as strategic or tactical AI. In this type of game AI, the focus is tactical AI

on analyzing game scenarios and executing strategies that achieve goals or subgoals, [30, p.
219].

There are two different views on tactical AI. One view is that it is used to provide guidance
for groups or squads of agents who have their own decision making and behavior, [42, p. 10].
An example hereof is group dynamics, e.g. Boids (section 2.7.1), in which a group of group dynamics

Boidsagents can be moved in formation with each agent handling its individual movement and
collision detection. Another view is that tactical AI is used for computing a sequence of
operations that achieve a goal, and that the agents serve merely as pawns for achieving that
goal, [30, p. 219-220]. An example hereof is Chess. The pieces may be thought of as agents,
but it is the (invisible) AI player who plans the sequence of operations that results in a
winning state.

Both views take a different approach to game AI than the character-based AI, although
the first approach may be thought of as an operational layer on top of character-based AI.
The latter is better suited for solving problems such as managing the cooperation of many
different entities with different properties, strengths and weaknesses such as soldiers on a
battlefield. For this reason, tactical AI is often used in real-time strategy (RTS) games, real-time strategy

[30, p. 244].

An example (figure 2.15 on the following page) of a popular RTS game relying on tactical
AI is Age of Empires II: The Age of Kings [Ensemble Studios, 1999], [30, p. 245]. This Age of Empires II: The

Age of Kings
game uses a two-layered AI system. The lower layer handles the AI of the individual units
which the player controls. The behavior of each unit agent is defined by a simple rule system
(section 2.7.3) or state machine (section 2.7.2), [30, p. 245]. The higher layer represents the
tactical reasoning where the agents are used as the means for overcoming the enemies. One
common technique is called command hierarchy and consists typically of three levels of command hierarchy

decisions; overall strategy, squad tactics and individual combat, [46, p. 4].
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Figure 2.15: Screenshot from Age of Empires II: The Age of Kings, [55]

“The AI in the [Age of Empires] game relies on tactics and strate-
gies to win, instead of ”cheating” by giving bonus resources to
itself, or tweaking its units to be stronger than normal, [55] ”

The next section goes into detail with some of the most common and also some newer,
promising, techniques used for implementing game AI, [46], [47]. For each of the techniques,
we will discuss its applications in game AI as well as its strengths and weaknesses.

2.7 Techniques for game AI

In this section we will examine many of the common and popular techniques for implementing
and handling game AI. The techniques we will discuss are those primarily associated with
character-based AI (section 2.6.4), although some of the approaches are also used for other
types of game AI, e.g. tactical AI (section 2.6.5).

We discuss and exemplify each technique in the context of games, either with fictional
examples or with concrete examples from commercial games. We also discuss the strengths
and weaknesses of each technique and compare them with other related techniques.

We begin by looking at emergent behavior and how this can be used for e.g. simulating
realistic flocking behavior. Secondly, we present a thorough introduction to finite state
machines, their inner workings and their (ubiquitous) applications in game AI. Finite state
machines were among the very first techniques for creating character-based game AI and
has since provided the foundation for many other techniques. Following this discussion,
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we will examine rule-based systems, a technique that has some very different qualities and
applications than finite-state machines. They are often used to create prioritized global
behavior rather than focusing on the sequentiality of character-based AI. We then turn to
the domain of problem solving, in which we look at techniques for state-space searching,
pathfinding and planning. The concept of scripting and the usage of scripts in both game AI
and game development is then considered. Finally, we will introduce and discuss the behavior
tree technique for implementing and designing game AI. It is a relatively novel approach that
combines the strengths of many other techniques to provide a general solution to many of
the problems faced in creating character-based AI. We will go into much greater detail about
this technique in chapter 3.

2.7.1 Emergent behavior

Emergent behavior is a popular technique in which several simpler behaviors interact to form
complex behavior, [46, p. 5]. It is often used in game AI and game animation to simulate
the appearance of intelligent agents with fluid movements. The use of emergent behavior
can be a great tool for the development of game AI as it allows each behavior to be simple
and modular, but the resulting behavior to be complex and interesting. Emergent behavior
originated in the field of robotics, in which it is a well-known concept. The following quote
is by artificial intelligence and robotics pioneer Rodney A. Brooks:

“Complex (and useful) behavior need not necessarily be a product of
an extremely complex control system. Rather, complex behavior
may simply be a reflection of a complex environment. It may
be an observer that ascribes complexity to an organism — not
necessarily the designer, [11, p. 3] ”

The ability to achieve the illusion of complex behavior from a number of simple behaviors
is very desirable. A concrete example of emergent behavior is found in Craig W. Reynolds’
influential Boids algorithm, [49]. The algorithm is used to simulate the flocking behavior of Boids

flocks of birds, swarms of insects, schools of fish, etc., [46, p. 5]. The algorithm uses three
simple rules for steering behavior in order to create realistic movement and behavior of the
group as a whole. The rules are shown in figure 2.16 on the next page.

The three rules create the basic behavior of each Boid, that is, each member of the
flock. The code needed for combining and applying the rules to create the resulting flocking
behavior is easily implementable. The pseudo code for computing the Boids’ velocities and
positions in Rn is shown in algorithm 1 on the following page.

The code creates a new velocity and position for each Boid, b, based on that Boids
current velocity and position along with the combined result of all rules. Each rule takes as
input a Boid and returns a computed velocity vector. In the Boids algorithm, the rules are
separation, alignment and cohesion. Other rules may include handling wind, making the
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(a) Separation: Avoid crowding (b) Alignment: Align heading (c) Cohesion: Group together

Figure 2.16: The three steering rules for flock behavior in the boids algorithm, [48]

Algorithm 1 Pseudo code for combining and applying the rules of the Boids algorithm
1: for each Boid b do

2: v ← NullV ector . NullVector = vector(0, . . . , 0)
3: for r := 0 to size[rules] do

4: v ← v +modifierr · ruler(b)
5: end for

6: b.velocity ← b.velocity + v

7: b.position← b.position+ b.velocity ·∆t . ∆t = time interval
8: end for

Boids inclined to move towards, or away from, a particular position, limiting the velocity
and placing bounds on the positions of the Boids.

Emergent behavior is a very powerful tool for combining behaviors into seemingly more
complex and more intelligent behavior. However, it is difficult to use emergent behavior
to simulate sequential behavior (section 2.2.3). The rules of emergent behavior is usually
formulated as a continuous function depending on some parameters (such as in the Boids
algorithm) and is much better suited for reactive control. Standard agent behavior typically
depend on a number of discrete states, of which only a few are active at any time. Behavior
such as that of the ghosts in Pac-Man depend on an internal state, in this case “Chase” or
“Frightened” (section 2.7.2 on page 35). Emergent behaviors are not suitable for modeling
such behavior. Historically the approach of choice for handling discrete state behavior is to
use finite state machines. In the next section we will look more closely at this highly popular
technique, its uses and its advantages and disadvantages.

2.7.2 Finite state machines

A state machine is a well-defined mathematical abstraction. It has been used as a waystate machine

of formalizing computer programs, regular expressions and many other discreet processes.
Apart from its strictly mathematical applications, it has also proved a central cornerstone
technique in game AI programming, [46, p. 10], [38, p. 47]. In the terminology of game AI,
any type of state machine is usually called a finite state machine (FSM), [42, p. 310].finite state machine
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“Finite-state machines (FSMs) are without a doubt the most com-
monly used technology in game AI programming today, [32, p.
283] ”

The FSMs used in game AI programming have a relaxed definition compared to the strict
mathematical formalism. Let us first look at the formal definition. A FSM (also known as
finite automaton, abbreviated FA) is an quintuple (Q,Σ, q0, A, δ), [41, p. 95], where finite automaton

• Q is a finite, non-empty, set of states

• Σ is a finite alphabet of input symbols

• q0 ∈ Q is the initial state

• A ⊆ Q is the set of accepting states

• δ : Q× Σ→ Q is a transition function

As an example finite state machine, let us take the FSM accepting the language of strings
with an even number of 0’s, i.e. the language specified by the regular expression (1∗01∗01∗)∗.
Let the FSM M = (Q,Σ, q0, A, δ) where Q = {S1, S2},Σ = {0, 1}, A = {S1}, and δ is given
by table 2.17(b). The transition table specifies the transition between states based on the transition table

input symbols, i.e. 0 or 1. M can be represented using a state transition diagram as state transition diagram

shown in figure 2.17(a).

(a) State transition diagram, [57]

q 0 1

S1 S2 S1

S2 S1 S2

(b) State transition table

Figure 2.17: Diagram representation for a FSM accepting the language of strings with an

even number of 0’s

FSMs in games

In general terms, a FSM defines a number of states and a notion of when it is possible to
transition from a given state to a given state. What makes it applicable to game AI is the
clear distinction between states and transitions. In game AI, each possible internal state of
an agent can be represented as a state in the FSM. The transitions between the states then
symbolizes the condition(s) causing the agent to change its internal state, and thereby also
its behavior. It can be thought of as a decision-action model in which the transitions are
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decisions causing a state change and the states represent the actions the agent perform in a
given state:

“This decision-action model is straight-forward enough to appeal
to non-programmers, such as level designers, on the game devel-
opment team, [32, p. 284] ”

The FSM is not used for evaluating the input symbols but primarily as a way of directing
the transition between the states of an agent. Therefore, there is no accepting states per
se. A simple example FSM is shown in figure 2.18. In this FSM we have three states as
represented by the rounded rectangles. They corresponds directly to the internal state of the
agent. The directed edges symbolize the transitions between the connected states, with the
edge labels describing the condition required for the transition to be possible. There can be
several outgoing transitions from a state, as e.g. can be seen in the “Fire Weapon” state in
the diagram. It is not apparent which transition will be utilized if both are applicable. In
such cases, the concrete implementation will provide a prioritization of transitions. Listing
2.1 below show an example implementation of the FSM in question.

Figure 2.18: A typical game FSM diagram of an enemy agent, corrected version of erroneous

diagram from [72, p. 44]

1 STATE( I d l e ) IF ( EnemyInSight ) THEN( FireWeapon )

2 STATE( FireWeapon ) IF ( Mortal lyHurt ) THEN( TakeCover )

3 STATE( TakeCover ) IF ( HealthRecovered ) THEN( FireWeapon )

4 STATE( FireWeapon ) IF ( EnemyIsDead ) THEN( I d l e )

Listing 2.1: Example implementation of the example FSM, [72, p. 44]

STATE, IF and THEN are macros that are expanded at compile time. They would typically
be expanded into a control structure of either switch or if-then-else statements (list-
ing 2.2 on the next page). The priority of execution thus becomes top-down. This explains
which transition is chosen if multiple are applicable. In this case of the previous discussion,
“Take Cover” (line 2) would be chosen over “Idle” (line 4) as the transition state from “Fire
Weapon”.

Listing 2.2 shows the typical code structure for handling a single state of a FSM.
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1 case [NAME OF STATE ] :

2 [DEFAULT ACTIONS]

3 [CONDITION EVALUATION]

4 i f ( [TRANSITION] ) {
5 s t a t e = [DESTINATION STATE ] ;

6 break ;

7 }
8 ( . . . )

Listing 2.2: Typical structure of a switch case for a state in a FSM, [30, p. 159]

In this case, the entire FSM is represented by a switch control structure switching on the
state variable and each case represents a state. In each frame of game AI execution, the
currently active state ([NAME OF STATE], e.g. Idle) is executed. Initially, the behavior asso-
ciated with the state ([DEFAULT ACTIONS], e.g. Patrol()) is performed. Next we need to de-
termine which state to transition to, if any. Any computations needed for evaluating the tran-
sition conditions are performed ([CONDITION EVALUATION], e.g. QuerySensorySystem()).
Each transition is then handled in turn ([TRANSITION], e.g. EnemyInSight()) and if it eval-
uates to true, its corresponding destination state ([DESTINATION STATE], e.g. FireWeapon)
is set as the new active state (state). Listing 2.3 shows how a concrete implementation of
the example state might appear.

1 case I d l e :

2 Patro l ( ) ;

3 QuerySensorySystem ( ) ;

4 i f ( EnemyInSight ( ) ) {
5 s t a t e = FireWeapon ;

6 break ;

7 }
8 ( . . . )

Listing 2.3: Example implementation of a state-handling switch case

Using FSMs for programming game AI has numerous advantages. They have been claimed
to be quick and simple to code, easy to debug, have little computational overhead, are
intuitive and flexible, [13, ch. 2]. These might be some of the reasons why FSMs have been
used in game AI programming since the dawn of video games. In fact, even the ghosts of Pac-
Man used FSMs to control their behavior. Let us examine the simple FSM from Pac-Man to
get an intuition for the usage of FSMs in game AI programming along with its advantages
and disadvantages.

The ghosts of Pac-Man have two internal states; “Chase” and “Frightened” (also called
“Evade”), [13, ch. 2], [42, p. 7]. In the “Chase” state, the ghosts try to hunt down Pac-Man,
while they in the “Frightened” state attempt to flee from him. The reason for wanting to flee
is that Pac-Man can consume a so-called “power pill”, enabling him to eat the ghosts. The
state transition table representing the FSM of the internal state of the ghosts is shown in
table 2.19 on the next page, and the resulting FSM state diagram is illustrated in figure 2.20
on the following page.
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Current state Condition State transition

Chase Pac-Man eats power pill Frightened

Frightened Power pill effect wears off Chase

Figure 2.19: State transition table for the FSM controlling the ghosts in Pac-Man

Chase FrightenedPac-Man eats power pill
Power pill effect wears off

Figure 2.20: State transition diagram of the behavior of the ghosts in Pac-Man

The FSM in 2.20 is rather self-explanatory, with simplicity being one of the key advantages
of using FSMs. Typical game FSMs use entry actions11 for switching the internal state ofentry actions

the agent and input actions12 for executing the behavior associated with current state. Theinput actions

FSMs used in games are thus Moore machines where actions reside in states as opposed
Moore machines

to Mealy machines where actions are performed on transitions, [32, p. 286].
Mealy machines

Adding states and transitions

The FSM used to specify the behavior of the ghosts in Pac-Man is very simple. Let us try
to extend the FSM and see how it is affected.

As it turns out, further investigations into the inner workings of the AI in Pac-Man reveal
that the ghosts have an additional state called “Scatter”, [45, sec. “Modus Operandi”]. When
the ghosts are in this state, they move toward their respective corner of the maze. Meanwhile
they completely disregard Pac-Man, thus giving the player a brief break from being chased.
The scatter state is entered at predefined intervals during each level. However, it may only
be entered four times per level or life. The revised state transition table for the ghosts is
shown in table 2.21 and the corresponding graph is illustrated in 2.22 on the facing page.

Current state Condition State transition

Chase Pac-Man eats power pill Frightened

Chase Scatter interval reached and scatter counter < 4 Scatter

Scatter Pac-Man eats power pill Frightened

Scatter Scatter timer expired Chase

Frightened Power pill effect wears off Chase

Figure 2.21: Extended state transition table allowing the ghosts in Pac-Man to “scatter”

11Actions performed upon entering a new state

12Actions performed continuously in the active states
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Scatter

Chase

Scatter timer expired

Frightened

Pac-Man eats power pill

Scatter interval reached and 
 scatter counter < 4

Pac-Man eats power pill

Power pill effect wears off

Figure 2.22: The FSM of the ghosts in Pac-Man, extended with the “Scatter” state (blue)

As can be seen from the state diagram in figure 2.22, a new state may have in- and out-
going edges to/from all other states. That is, a new state may add up to 2n (i.e. O(n)) new
edges to the graph, where n is the number of states in the graph. Our FSM is rather simple,
but this example tells us that if the states are largely interconnected we need to add and
maintain many transitions for each added state. In such cases, it may be worth considering
whether another approach would be more suitable instead, e.g. a rule-based system (section
2.7.3).

One drawback to the simplicity of FSMs is that it can be difficult to create sequential
behavior (section 2.2.3). On the other hand, FSMs are well suited at handling reactive
control schemes13. In addition to the number of edges increasing greatly in some situations,
in some cases multiple states needs to be added to the FSM in order to add a single state
that depends on its context. The number of states in the FSM may thus also increase greater
than linearly with the number unique states required. Such situations occur when we have
states that depend on their context in the graph, i.e. the path in the graph. The next section
will show that context dependent states occur quite frequently in game FSMs and that they
pose a big practical problem.

Problems with complexity

Suppose we add a new context dependent state to the FSM. Because the state depends upon
its context, we need to consider the sequence of states before it.

Returning to the Pac-Man example, suppose we need to add a new state “Exclaim” to
the ghosts. The state would cause them to make a textual or auditory statement on the basis
of their state. That could be “I’m coming to get you!” if the ghost is in the chase state and
“Flee!” in the frightened state. We leave out the “Scatter” state for simplicity. To be able
to achieve the desired behavior, we would need two additional states in the state diagram
to be able to determine whether the transition originated from the chase or the frightened
state. The resulting diagram is shown in figure 2.23 on the next page.

For each new state we want to add, we need to add as many as O(n) additional states in
the FSM, where n is the number of states, to be able to represent the different contexts. As
previously noted, each of these states also add O(n) edges. Therefore, for each added node,

13Unless the FSM is very sequential, in which case the states need to be highly interconnected. A solution

for avoiding this problem could be to use parallel FSMs (section 2.7.2)
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Chase

Frightened

Pac-Man eats power pill

Exclaim
"I'm coming to get you!"

Exclaim timer counted down

Power pill effect wears off
Exclaim
"Flee!"

Exclaim timer counted down

Figure 2.23: Multiple states (blue) needed in order to insert a context dependent state

we get an asymptotic doubling in the size of the graph in both nodes and edges. This is
sometimes referred to as the “n2 problem”, [35, sec. “Behavior Tree AI”]:

“Sometimes, especially when modeling complex behaviors, a clas-
sic FSM will begin to grow quickly, becoming cluttered and un-
manageable. Even worse, we will sometimes need to add some
additional behavior and will discover how our FSM’s size almost
doubles in each step. [30, p. 161] ”

In practice, of course, each state will not depend on all other states, but this analysis
clearly illustrates the scalability problems of FSMs, [42, p. 318]. Figure 2.24 on the facing
page illustrates the problem for a concrete game agent. In 2.24(a) we have the basic loco-
motive FSM for an agent. The FSM enables the agent to patrol along waypoints (see 4.2 on
page 85) and – if spotting the player – to chase the player until it is within shooting distance.
We now want to add states to enable the agent to shoot and reload. Figure 2.24(b) shows
the FSM after adding the additional states.

The FSM has clearly grown much more complicated as the shooting behavior needs to
take into account the different contexts from which it is invoked. In the next section we will
look at extending the concept of a FSM for overcoming the outlined limitations.

Extensions

These complexity problems are difficult to handle because we attempt to obey the definition
of the FSM14. The means to overcoming the limitations of the FSM lie in further relaxing
its definition and extending it with functionality useful to modeling game AI.

“We argue that this [FSMs being criticized as being unwieldy] is
not a consequence of the finite-state machine approach per se, but
rather is a result of the ad hoc AI development model utilized by

14In fact, the definition we have for the “game FSM” is already highly relaxed compared to its mathematical

counterpart
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(a) FSM for patrolling and chasing (b) FSM for patrolling and chasing extended with

states for shooting and reloading

Figure 2.24: Increasing complexity when adding new states to a FSM. In (b) we add

shooting and reloading functionality to (a), [30, p. 162, 163]

most game companies. [38, p. 47] ”
When faced with problems that ordinary game FSMs had problems with handling, devel-

opers extended them with new layers of functionality, often dubbed extensions. The increase
in expressive power of FSMs from extensions was often specific and restricted to certain do-
mains. Others, however, solved common problems occurring in game AI programming and
has been widely used in the game industry. In the next sections we will look at some of the
most commonly used extensions.

Parallel FSMs — One of the most popular extensions to FSMs is called parallel FSM, parallel FSM

[30, p. 161]. The reason for its popularity is that it provides a work-around for the complexity
problem. It allows for complex behavior to be expressed using simpler FSMs by running
several FSMs in parallel, thereby avoiding the need for duplicating states.

The concept of having multiple FSMs for the same agent may seem inappropriate, as if
trying to simulate the agent by giving it multiple brains. However, it is only a matter of
viewing the agent a bit more abstractly. Consider, for instance, an old-fashioned airplane
fighter with a pilot, a gunner and a bomber. If you think of the airplane as an agent,
the three operators within will each have their specific behavior which, in concert, forms
the behavior of the airplane. The pilot handles the navigation, the gunner handles the
weapon orientation and firing and the bomber handles the dropping of bombs. Because of
the (relative) independence of these behaviors, they can be formed to work autonomously, i.e.
independent of the others, and run in parallel to model the entirety of the airplane behavior.

Figure 2.25 on the following page illustrate the concept with two FSMs able to run in
parallel: a locomotion handling FSM (figure 2.25(a)) and a weapon handling FSM (figure
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(a) FSM for patrolling and chasing (b) FSM for controlling

a weapon

Figure 2.25: Expressing more complex behavior by using two FSMs in parallel, thereby

avoiding the complexity problem, [30, p. 162, 163]

2.25(b)). Together they form the behavior of figure 2.24(b) on the previous page while
avoiding the added complexity.

The downside to this approach is that the parallel FSMs must be independent of each
other, something that is hard to achieve in practice. Take our airplane example, for instance.
If the different layers of the FSM were completely separate, the gunner will be unable to
inform the pilot of targets that escape his range or angle, and the bomber would be unable
to bomb his target if the pilot decides to fly the airplane upside-down. Thus, some information
sharing between the layers will often be required. Because the layers operate in parallel, this
can result in write conflicts or deadlocks. The next approach expands on this issue bywrite conflicts

deadlocks enabling information sharing between individual agents.

Synchonized FSMs — In a cooperative multiagent system (section 2.3.1 on page 17)
the agents work together in order to maximize their performance measure, i.e. achieve a
common goal. To create the AI for this, we need some form of information sharing between
the agents. Specifically, an agent need to have some means of synchronizing its behavior
with the other agents. An extension for handling this is called a synchronized FSM. Thesynchronized FSM

information sharing is typically handled via either message passing or a shared memorymessage passing

architecture, e.g. a dynamic blackboard, [47, p. 16].
dynamic blackboard

Message passing requires knowledge of a subset of cooperating agents, to which each new
piece of shared information is broadcast. Information sharing via message passing can slow
performance in agent-dense systems and is not guaranteed to be lossless if agents do not
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pass messages to all other cooperating agents. This may be desirable at times, however, such
as when the environment is not fully observable (section 2.3.1 on page 16). It could, for
instance, be used to only inform agents who are within earshot.

A dynamic blackboard is a shared bulletin board on which each cooperating agent, called
knowledge sources, can post and read information. The blackboard approach is prone to knowledge sources

help agents “cheat” by supplying information they could not have obtained by following the
laws governing the game environment. If agents put the position of spotted enemies on the
blackboard, it would thus enable the agents to be aware of enemies they could not see yet.
This is, in fact, a desirable trait in some scenarious. The squad-based enemies of Half-Life
use (or more accurately; they appear to be using) walkie-talkies to alert squad-members
when they spot the player, thereby sending a strong signal of intelligence to the player who
is able to overhear their communication. In fact the perceived intelligence is an illusion that
neatly covers the underlying technology; a post on the squads blackboard and play-back of
an appropriate audio-file, [30, p. 166].

Soldier Soldier Soldier Soldier

Squad

Attack slots

Slot #1 Slot #2

reloading covering

Figure 2.26: Selecting soldiers from the squad to actively engage the enemy. This squad

attack behavior is nick-named the “Kung-Fu” tactic due to the limited number of active

combatants.

This blackboard technique is used to control the attack behavior of squads in Half-Life,
as also mentioned in section 2.6.4 on page 26, as well. To avoid overwhelming the player,
only up to two squad members are actively attacking the player at any time with the rest of
the squad engaged in other combat-related activities such as reloading or covering. In the
implementation, each squad has two slots available for attacking. A squad member can only
attack if there is a free attack slot and if he chooses to attack, he fills one of the available
slots. Figure 2.26 illustrates this technique. The explicit communication between the squad
members is conveyed simply from playing an audio clip when filling or leaving an attack slot
(e.g. “Moving in!” and “Cover me!”, respectively), [39].

Heirarchical FSMs — Traditional finite state machines do not scale very well. Also, using
regular FSMs it is hard to model so-called alert mechanisms without having to duplicate alert mechanisms

states, [42, p. 318]. Alert mechanisms are cases where the current behavior temporarily
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needs to be abandoned for a more important behavior and is then returned to once the more
important behavior has finished. An example hereof could be a patrolling behavior (section
4.2) that is interrupted by the agent spotting an enemy. We would then like the agent to
engage the enemy and return to patrolling afterwards. Figure 2.27 illustrates the concept
of an alert mechanism on a service robot for cleaning. Figure 2.27(a) shows a regular FSM
for the behavior of the robot, with the black dot representing the initial “state”. In figure
2.27(b) the same behavior has been extended with an alert mechanism for when the robot is
low on power. Notice that this new state must be added for each existing state in order to
allow execution to continue from where it left off.

(a) FSM for a cleaning robot (b) FSM for a cleaning robot with an alert mechanism

Figure 2.27: Extending a FSM with an alert mechanism will result in duplicating states to

be able to return to the previous state, [42, p. 319]

A technique known as hierarchical finite state machines (HFSMs) has been a popularhierarchical finite state
machines

solution for these problems, [37], [17]. HFSMs make it easier to reuse game logic and to
interrupt and resume running behavior. The design of HFSMs differs from that of FSMs in
two ways: states may be grouped together to form so-called super-states and these super-super-states

states can have generalized transitions to other super-states, [17]. These super-states cangeneralized transitions

be FSMs on their own and is the means for creating a hierarchical structure:

“The primary difficulty is coping with courses of action – such as
having a conversation or a cup of tea – that consist eventually
of thousands or millions of primitive steps for a real agent. It
is only by imposing hierarchical structure on behavior that we
humans cope at all [50, p. 970] ”

Figure 2.28 on the next page illustrates the concept of grouping together states into
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higher level super-states. The main advantage over regular FSMs is that we avoid cluttering
the design with duplicate states for handling context dependent states. As an additional
benefit, the grouping allows the designers to think about (super-)states on a higher level of
abstraction and is better suited for focusing on the behavior of the states, rather than the
details how the FSMs are wired internally. As a result the design of the system becomes
more intuitive and easier to reason about15.

Figure 2.28: Figurative illustration of the concept of grouping states into super-states, [17]

Let us return to the example of the cleaning service robot. Its behavior from figure 2.27(b)
on the facing page is shown in figure 2.29 using a HFSM instead of a FSM. We now get several
states grouped in the super-state “Clean up”, describing the higher level combined behavior
of the internal states. Also, the alert mechanism for when the robot is low on power and
needs to be recharged is now integrated into the design in a much more intuitive manner. The
simplicity of the design is not mirrored by the implementation, however, as the hierarchical
structure needs to maintain the currently active state in each super-state.

The “H*” in the “Clean up” super-state in figure 2.29 refers to the “history state” which
is the state that needs to be re-entered when returning to the super-state after executing
(a number of) other super-states, [42, p. 320]. The implementation of a HFSM depend
on a nested list of “active” states representing the recursive invocation of states throughout
the hierarchy. The complexity of the implementation of HFSM largely comes from not
only having regular transitions within the states of super-states and generalized transitions
between super-states, but also explicit transitions between the inner states of a super-state
directly to another state outside the super-state. For instance, the “Search” state may be
designed to transition directly to the “Get power” state if nothing is found during the search.
Pseudo code for the implementation can be found in [42, sec. 325-330]16.

15HFSMs are actually derived from statecharts, a formalism authored by David Harel in 1987 to help in

visualizing complex systems, [17]

16Be warned: The pseudo code for the HFSM forms one of the longest and most convoluted algorithms of

the 800-page book



44 Chapter 2. Game development and game AI

Figure 2.29: The behavior of a cleaning robot with an alert mechanism designed with a

HFSM, [42, p. 320]

Other extensions — There is a long list of extensions to finite state machines. Many
extensions are specialized, focusing on optimizing performance, memory or enabling certain
types of behavior. Our focus is on general tools useful for modeling game AI, and a few
note-worthy extensions from this category are summarized below.

• Stack-based finite state machinesStack-based finite state
machines

A stack-based FSM, also known as a push-down automata, is a FSM that stores
push-down automata a recorded history of visited states. This history can then by used to e.g. resume

interrupted behavior. [46, p. 10]

• Polymorphic finite state machinesPolymorphic finite state
machines

The concept behind polymorphic FSMs is that we might be able to use almost the
same FSM for similar types of agents, e.g. a rifleman and a grenadier, [32, p. 297].
Polymorphic FSMs can be instantiated into slightly different FSMs by having certain
states that are instantiated depending on e.g. the character type of the agent.

• Non-deterministic finite state machinesNon-deterministic finite
state machines

Non-deterministic FSMs use (pseudo) randomness to avoid predictability and increase
replayability, [30, p. 168]. If a state has several outgoing transitions, each transition
may have an weight associated with it that determines the possibility of choosing that
transition. For instance, a FSM for a patrolling behavior may include a 25% chance of
stopping for a smoke whenever a waypoint is reached. Although this randomness makes
the agents less predictable, it also makes it harder to design the desired behavior.

2.7.3 Rule-based systems

Finite state machines are a suitable tool for modeling many types of game AI. The types of
behavior best suited for being represented by a FSM are those which are localized (eachlocalized

state has a small number of transitions) and sequential (the sequence of states is important).sequential

However, if we need to model behavior that depends on global conditions and disregards
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sequentiality, we clearly need another tool. That tool is often chosen to be a rule-based

system (RBS) also known as a production system or expert system, [51], [47, p. 22]. rule-based system

production system

expert system

A RBS consists of a prioritized list of rules called condition-action pairs (or reaction

condition-action

rules), [72, p. 43]. For each rule, there is a set of conditions on the left-hand side (LHS).

reaction rules

On the right hand side (RHS), there is an action. If the conditions on the LHS evaluates
to true, then the corresponding RHS action is performed. The rules are evaluated from the
top down, and terminates whenever an action has been executed. The following list is an
example RBS illustrating the form of rules.

• Condition1.1 → Action1

• Condition2.1 && Condition2.2 → Action2

• Condition3.1 && ¬ Condition3.2 → Action3

• (...)

A rule-based system for an example enemy AI might look like the following.

• Mortally Hurt → Seek Cover

• Enemy Spotted && Have Weapon → Attack Enemy

• Enemy Spotted → Flee

• (...)

• true → Idle

The game AI will prioritize staying alive, thus the “Mortally Hurt” condition is the first
to evaluate. If it evaluates to false the system will instead evaluate whether an enemy is
spotted and a weapon is yielded. If both evaluate to true, it will proceed to attack the
spotted enemy. Because of the prioritization, the condition of the next rule actually reads
(¬ Mortally Hurt && Enemy Spotted && ¬ Have Weapon), thus causing a fleeing behavior
if evaluated to true. Finally, at the end of the list we have the default action triggering if
no other condition is met.

In games, RBSs are used to model the behavior of enemy AI in most real-time strategy
games, [30, p. 173], [51]. In such games, players need to manage the tactical aspects of base
and unit construction as well as the defense and offense. An example is Age of Empires II:
The Age of Kings (see 2.6.5 on page 29), which uses a rule based system for the behavior of
the enemy AI. The developers chose to use a symbolic rule system for specifying the rules. symbolic rule system

A symbolic rule system is a scripting language that is specific for the domain of rule-based
systems. A concrete example hereof is shown in the listing below.

1 ( d e f r u l e

2 ( resource− found wood)

3 ( bui lding−type−count−total lumber−camp < 5)

4 ( dropsite−min−distance wood > 5)

5 ( can−build lumber−camp )

6 =>

7 ( bu i ld lumber−camp )

8 )
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Listing 2.4: Implementation of a lumber camp building rule in the scripting language used

in Age of Empires II: The Age of Kings, [30, p. 173]

Listing 2.4 specifies a rule for building lumber camps. The conditions are that (1) wood
is found, (2) fewer than five lumber camps are owned, (3) the distance to the wood is greater
than five units from an existing lumber camp and (4) we are able to build a lumber camp.
If all four conditions are met, the AI will proceed with the corresponding action, that is; to
build a lumber camp.

RBSs can be extended in a variety of ways to increase its expressive potential. If
the RBS is needed to keep state, it can be extended with user-defined facts. User-user-defined facts

defined facts allows for setting and checking facts, i.e. flags that can be used to keep
state. This could be implemented in the action (set-fact KEY VALUE) (e.g. (set-fact

building-lumber-camp 1)) and the condition (check-fact KEY RELATION VALUE) (e.g.
(check-fact building-lumber-camp equals 1)), [30, p. 179].

Another extension to RBSs is to base rules on a knowledge base and an inferenceknowledge base

engine (or semantic reasoner). A knowledge base is a blackboard of information theinference engine

semantic reasoner
agent has been provided with or has gained from experience. It can hold global knowledge
or temporary working memory. In games, the knowledge often relates objects in the

working memory
environment to some statically defined properties. That is, it defines the relationship between
objects and the properties. For instance, an agent representing a mouse may have a (global
or temporary) knowledge base stating that CHEESE is EATABLE; CATs are ANIMALs; CATs

are DANGEROUS. The agent can then use its inference engine to derive answers from the
knowledge base to reason about other things in the environment. For instance, knowing that
Garfield is a cat, the mouse can make the following reasoning: GARFIELD is a CAT; CATs

are DANGEROUS → GARFIELD is DANGEROUS17.
The disadvantages of RBSs is that the behavior must be formulated entirely from if-then

statements, i.e. condition-action pairs. Additionally, they are hard to maintain for large
problem areas where many rules are required.

“The difficulty in using RBS lies with the high learning curve and
poor tool support. [72, p. 44] ”

RBSs can be implemented using a decision tree, [30, p. 172]. Figure 2.30 on the facingdecision tree

page shows a decision tree modeling the behavior for how to engage an enemy in combat.
In the next section we will look at game AI through the more general issue of solving

problems by searching to find solutions to a series of subproblems, thereby solving the original
problem.

17Note that CATs are DANGEROUS; CATs are ANIMALs → ANIMALs are DANGEROUS is invalid, as should be

determined by the inference engine. Also, Garfield is undoubtedly more dangerous to his owner, Jon Arbuckle,

than he is to mice.
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Figure 2.30: Example of a decision tree for modeling a rule-based system, [42, p. 296]

2.7.4 Problem solving

Finite state machines (section 2.7.2) are good at modeling sequential behavior and rule-based
systems (section 2.7.3) are good at modeling global prioritized rules, but what about the AI
needed to play a game of Tic-Tac-Toe? Clearly, it is infeasible to use a RBS or a FSM given
the amount of rules18 or states19 required to represent each possible situation, i.e. the state-

space, [60]. Instead, for these kinds of problems, we can turn to the state-space search state-space

state-space searchparadigm, [50, p. 94].

State-space search

In state-space search we have an initial configuration from which there is a number of possible
states we can transition to. From each of these states we will again have a number of possible
states we can transition to and so forth. We can thus represent the possible states as a tree
in which the nodes are configurations (or states) and the edges are the actions that change
the parent configuration into the child configuration. Such a tree is called a game tree and game tree

figure 2.31 on the next page shows a game tree for Tic-Tac-Toe.

The leafs of the tree are termination configurations, some of which may be goal states. goal states

Goal states are those configurations in which the sought after state is achieved. In agent
terms, it is analogous to a maximization of the performance measure, i.e. the agent “wins”
the game.

If the size of the state-space is relatively small, we may be able to search the entire tree
using a brute force approach, i.e. a blind or uninformed search. This can be achieved by uninformed search

18The upper bound on the size of the state space is 39 = 19, 683. Removing illegal positions yield a size of

5, 478, i.e. the number of rules needed to fully represent the state space in a RBS

19The upper bound for the size of the game tree is 9! = 362, 880. Removing illegal positions yield a size of

255, 168, i.e. the number of states required to fully represent the game tree in a FSM
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Figure 2.31: Subset of the game tree of a game of Tic-Tac-Toe, [30, p. 181]

a depth-first search (DFS). We may terminate once we have found a goal state, or we maydepth-first search

proceed to search the entire state-space in the hope of finding a better20 goal. Once we have
found an acceptable goal state, we know the sequence of actions (i.e. edges) that change the
initial configuration into a goal state. It may not be possible to perform the entire sequence
of actions as the opposing player may (with good probability) counteract and disrupt the
plans. In that case, we simply recompute the best course of action whenever necessary.

If the size of the state-space is too large for doing uninformed searches21, we may instead
use a heuristic based algorithm, [50, p. 73]. In such algorithms we use some auxiliaryheuristic

information in order to disregard portions of the state-space. Because we do not make an
exhaustive search in the state-space, we are not guaranteed to find the optimal solutionexhaustive search

in all cases. However, most heuristic algorithms have proven upper and lower bounds on
their approximation, so we can ensure the solutions to be within an acceptable fraction of
the optimal.

Pathfinding

Another highly popular application of search algorithms is in pathfinding, [30, p. 221].pathfinding

Pathfinding is the process of finding a “best“ path from point A to point B (figure 2.32(a)).

20Although the goal may be better in itself (e.g. one might deem it better to win Connect-Four with

five rather than four connected colors), it may also have a shorter path from the initial configuration, more

reachable goal states in its subtree, etc..

21That is, using a brute-force approach will consume more time than we are willing to spend
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A best path may be the shortest, the easiest, the safest etc. depending on the context.

(a) Computing paths from point A to point B in a

virtual environment, [68]

(b) A weighted graph overlaid on a game level, [42,

p. 201]

Figure 2.32: Pathfinding in game level environments and their geometry

Often, pathfinding is performed by overlaying the game world with a weighted graph, weighted graph

G = (V,E), with vertices V depicting accessible areas of interest (figure 2.32(b)). There is a
weight matrix associated with the edges E depicting the cost associated with moving from
one node to a connected node. The best path is found by minimizing the cost of moving
from one node to another via a number of connected nodes.

(a) A weighted graph, or waypoint mesh, on a game

terrain to guide pathfinding

(b) A found path from vertex A to vertex B via con-

nected vertices in the graph

Figure 2.33: Using a graph as an auxiliary tool for computing paths between locations in

a game world, [53]

One popular approach in games is to use Dijkstra’s algorithm, a so-called single Dijkstra’s algorithm

source shortest path algorithm for finding optimal paths in such a graph, [30, p. 224]. single source shortest
path
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It computes the shortest path from a single source, s ∈ V , to all other vertices in V . If we
know the endpoint, B, a non-global algorithm will be much better suited for computing a
path. The algorithm of choice for most games is the A* algorithm, [30, p. 228], [46, p. 3],A*

[50, p. 97]. It is a heuristic-based algorithm that determines a path from A to B while only
searching the local state-space for each vertex. Figure 2.33 on the previous page shows an
example of the best computed path from point A to point B in the waypoint mesh.

Planning

In planning we have a goal (as in state-space searching) and a plan library of subgoalsplanning

plan library that works as means for satisfying the goal, [47, p. 21]. As such, it can be thought of as
a graph where the nodes are actions, the edges are the conditions that needs to be met in
order to proceed with an action and the leafs are the goals.

Figure 2.34: Finding a sequence of actions that constitutes a plan for satisfying the goal

in the GOAP planning architecture, [43, p. 3]

We need to search the state-space to find a best path through the graph (figure 2.34). A
path through the graph reaching a goal consists of a sequence of actions, called a plan. Oneplan

approach for searching through the state-space is called Goal-Oriented Action PlanningGoal-Oriented Action
Planning (GOAP) and is designed specifically for real-time control of autonomous character behavior

in games, [43]. An example plan for a agent using GOAP is illustrated in figure 2.35 on
the next page. Through searching the GOAP system has found a series of actions that, if
successfully executed, will result in the agent achieving its goals of killing the enemy and
recovering lost health.

Another approach is based on the idea of hierarchical decomposition. In this ap-hierarchical
decomposition

proach, each node in the graph is a composite action which may consist of a number of
subactions. The subactions are again composed by other actions until we reach primitive

actions. The approach is called hierarchical task network planning (HTN planning).primitive actions

hierarchical task
network planning

In HTN planning, we have an initial plan to reach a high level goal, [50, p. 422]. Actions
from the plan library are then instantiated and combined to satisfy the goal of the plan.
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Figure 2.35: Plan for an agent using GOAP. The goal of the agent is to kill the enemy and

recover health, [72, p. 45]

decomposes to

Hire
Builder

Construction
Pay

Builder

Money

Build
House

Land    House

Start Finish

Land
House
L Money

Permit
Get

Figure 2.36: Hierarchical task network planning, [50, p. 424]

Each (high level) action has a number of external preconditions and external effects. external preconditions

external effectsExternal preconditions are the conditions required for the action to be viable. External effects
are the high level postconditions of performing the action. In figure 2.36 we have the high
level plan ”Build House“. This plan has the external precondition ”Land“ and the external
effect ”House“, i.e. given a land property the plan will result in a house on the property.
A decomposition of the ”Build House“ plan into a possible action sequence is shown in the
buttom of figure 2.36. In the decomposition we also see the secondary effect ¬Money, that secondary effect

is not used directly to achieve the goal but is consumed within the action decomposition.

An implementation of a HTN planner used in games is the Simple Hierarchical Or-
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Figure 2.37: Using SHOP to construct a travel plan in a HTN, [24]

dered Planner (SHOP), [24]. Figure 2.37 shows an example illustration of how the SHOPSimple Hierarchical
Ordered Planner

system may be used to create a traveling plan from X to Y . The SHOP system addresses
issues of efficiency and flexibility of common HTN planners by making it easier to insert
custom, domain specific, logic to guide the search, [24].

The concept of planning is very powerful and has found usage in many applications besides
game AI. It is goal-directed by construction and great for autonomy (section 2.2.2). However,
in most cases it is also very difficult to implement, also for games, [24]. The main reason is
that most games are complex systems in which it can be hard to determine the outcome of a
series of actions22. Planning has been criticized for being disconnected from the real world,
[23, p. 20].

In the next section we will look at the concept of scripting for aiding in data-driven
development and in easing the content creation process.

2.7.5 Scripting

In section 2.6.3 we emphasized the advantages of data-driven development. Scripting isScripting

the concept of loading some or all of the (game AI) logic from external resources, [46, p.
9]. Scripting relies on custom file formats, and sometimes even scripting languages, forscripting languages

expressing logic in a domain specific manner, [32, p. 288]. Game AI related resources are
the prime candidates for a scripted approach, although other parts of games (e.g. rules for
gameplay or game dialog) also can take advantage of scripting.

“Scripting is a very popular method [...] It streamlines the creation
of the AI and logic content by placing that responsibility in the
hands of people different from those actually coding the engine.
It also allows for more creative AI design. Often, a dedicated
AI programmer using a scripting language will come up with new
ideas, and because the language will allow him to test them imme-
diately, he will create more compelling and believable characters.

22As mentioned in section 2.2.1 on page 12, omniscient agents are impossible in reality and very hard to

achieve for anything other than simple, closed and well-defined systems
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It all boils down to selecting the right feature set for the scripting
language so that it combines a powerful set of primitive calls with
the ease of use your content team will demand, [30, p. 250] ”

Scripting can be used on many different levels, from using no scripting at all to creating
the entire game using scripts. Most games, however, use a medium level of scripting where
the core gameplay and game AI have been hardcoded and scripts are used for handling special
gameplay (e.g. in-game mini-games or story telling) and for handling custom agent behavior.
In this common ”custom behavior“ level usage of scripting, very specialized behavior is often
known as scripted sequences, and is sometimes frowned upon for not being good game AI
but rather a form of virtual puppeteering:

“Without the luxury of waiting for [game AI] progress, the com-
mercial entertainment industry has had to rely on fully scripted
interactions with human players to support immersive interac-
tions of any complexity besides combat. This disparity between
the need for AI in entertainment environments and the state of
AI research will continue to grow as Interactive Entertainment
forms push in new directions. [34, p. 1] ”

As an example of a scripting language, let us examine Lua. Lua is ”a powerful, fast,
lightweight, embeddable scripting language“ that has been widely used in the video game
industry, [3]. Below is an example of Lua code.

1 hea l th = 100

2

3 func t i on take damage ( x )

4 p r i n t ( ”Ouch ! ” )

5 hea l th = hea l th − x

6 i f ( hea l th <= 0) then

7 dead ( )

8 e l s e i f ( hea l th < 30) then

9 f i n d c o v e r ( )

10 end

11 end

12

13 func t i on dead ( )

14 p r i n t ( ”You are dead” )

15 FUNC DEAD( ) −− c a l l a r e g i s t e r e d func t i on

16 end

17

18 func t i on f i n d c o v e r ( )

19 −− code f o r f i nd i n g cover to r ega in hea l th

20 end
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Invoking the take damage-function three times with 40 as argument yields the following
output:

1 Ouch !

2 Ouch !

3 Ouch !

4 You are dead

One reason for the popularity of Lua is that it provides a very simple API for communicating
between the native and the scripted code. The FUNC DEAD-function is a native function,
for instance. The following C code shows how simple the native function is registered as a
function available in the Lua scripts.

1 s t a t i c i n t p layerIsDead ( LuaState∗ s t a t e ) {
2 // code f o r func t i on

3 re turn 0 ;

4 }
5

6 void r e g i s t e r N a t i v e F u n c t i o n s ( ) {
7 LuaStateOwner s t a t e ; // Create s t a t e

8 // Reg i s t e r a nat ive C/C++ func t i on f o r a c c e s s v ia Lua

9 s tate−>GetGlobals ( ) . Reg i s t e r ( ”FUNC DEAD” , playerIsDead ) ;

10 }

Scripts ease the development process because they are domain specific higher level lan-
guages. Furthermore, they do not require the game to be recompiled – or in some cases even
restarted – to be able to see the in-game results of changes in the scripted code. They are
also very flexible which can be both an advantage and a disadvantage. The advantage is
that there are no limitations to what they can compute. The disadvantage is that there is
no overall structure. There is nothing to guard the game AI designers from writing sloppy,
unstructured and undocumented code. Additionally, the game designers need to be very
aware of the inner workings of the native code base as the scripts need to cooperative with
the game engine. They need to know which functions are exposed and how they work. Ifgame engine

the scripting system is developed in-house it may be better suited for specific purposes, but
it will often be error-prone and expensive to maintain23:

“For everything you might expect to benefit from a scripting lan-
guage [...] there are just as many pitfalls [32, p. 289] ”

To aid the game designers in the scripting process, scripting tools or editors are often
utilized. In many cases, these tools are created by the in-house tool programmers as they

23It used to be common for each game studio to develop their own scripting language. However, increasing

requirement for the quality and efficiency of scripting engines as well as advances in off-the-shelf scripting

languages has as made it much less desirable for game studios to create their own language. Instead, many

studios use free or commercial scripting languages such as Lua, [30, p. 251]
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are often very tightly coupled with the game engine. The tools ease the interfacing with the
game engine, provide syntax highlighting in the scripts and sometimes even provide facilities
for profiling and/or debugging. Common for all scripting tools is that the game designer has
to write code for expressing the desired behavior. While this approach is magnitudes better
than having game designers write behavior directly in native code, it still is not intuitive for
many game designers.

In the next section we will take an introductory look at a new and popular technique for
creating character-based AI. We will discuss the technique more fully in chapter 3.

2.7.6 Behavior trees

The behavior tree (BT) technique is a novel approach to game AI that merges the core behavior tree

qualities of several popular technologies. Plainly put, BTs are a compromise between FSMs,
HTN planners and scripting. Although the BT technique is firmly rooted in FSMs and
HFSMs, it does not have a single historical precedence, [36, sec. ”Overview“]:

“They [behavior trees] are a synthesis of a number of techniques
that have been around in AI for a while: Hierarchical State Ma-
chines, Scheduling, Planning, and Action Execution. Their strength
comes from their ability to interleave these concerns in a way that
is easy to understand and easy for non-programmers to create,
[42, p. 334] ”

It has emerged as a way of easing the modeling of purposeful action selection for agent-
based behavior, [35, sec. ”Behavior Tree AI“]. Although it is a relatively new technology, it
has gained widespread popularity and recognition in the game industry. It has been used in
popular and critically acclaimed games such as Halo 2, Spore and Grand Theft Auto: San
Andreas, [37], [35], [23]:

“Behavior trees on their own have been a big win for game AI, and
developers will still be exploring their potential for a few years,
[42, p. 371] ”

So what is a behavior tree actually? In simplified terms, a behavior tree may be regarded
as a HFSM where the transitions are implicitly handled by special nodes that impose an
ordering and flow of control among its children, [42, p. 334]. To make the definition more
tangible, let us examine a simple example.

Figure 2.38 on the next page shows a behavior tree with four nodes named Behave,
Idle, Suspicious and Attacking. Behave is the root of the tree and guides the control flow
between its three children. In this example, the children are all composite nodes, that is, they
are the roots of subtrees with a number of child nodes. Each of the three nodes constitute
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Figure 2.38: Simple high-level example of a behavior tree, [19]

a certain behavior. Here, we might imagine the agent being an enemy soldier who either
performs an idle behavior (e.g. smokes a cigarette), a suspicious behavior (e.g. attempts to
track down the player) or an attacking behavior.

The actual implementation of the three behaviors is hidden in the composition of the
subtrees, allowing the designer to focus on the appropriate level of abstraction. Selecting
which behavior to perform is the responsibility of the parent node. This selection will often
depend on observations in the world. For instance, if the agent is in the Idle behavior and
spots an enemy, it would switch to the Attacking behavior. Loosing the enemy from sight,
would then switch to the Suspicious behavior.

One thing that sets behavior trees significantly apart from standard HFSMs is that tran-
sitions between nodes do not need to be explicitly defined. Handling of transitions are built
directly into the hierarchical structure of behavior trees. Action selection is performed by
searching through the tree. The search traverses the tree and the nodes guide the direction
of the search and thus help to select relevant actions. The search is intuitive as only a few
distinct types of search-guiding nodes are needed and each has a specific purpose.

In chapter 3 we will go into much further detail with the function of behavior trees and
the specific types of nodes most commonly associated with it. Additionally, we will discuss
whether behavior trees are well suited for designing behavior.

2.7.7 In conclusion

In the preceding sections we have discussed a broad selection of common and popular tech-
niques for game AI. We have looked at finite state machines (section 2.7.2) as a popular and
very powerful choice for decision making and action selection. We have also seen the areas in
which FSMs are limited and need extensions to increase their expressive power in the domain
of game AI.

“When applied to AI for building purposeful goal-directed behav-
iors, traditional FSMs just don’t scale very well. This is the main
reason developers in the games industry have been primarily mov-
ing towards systems like behavior trees instead, [31] ”
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As a possible solution for overcoming the limitations of FSMs, we discussed the advantages
of using a hierarchical approach in both hierarchical FSMs (section 2.7.2), hierarchical task
networks (section 2.7.4), and behavior trees (section 2.7.6), [17], [19].

We have introduced emergent behavior (section 2.7.1), rule-based systems (section 2.7.3)
and different forms of planning (section 2.7.4) as very diverse approaches for game AI. Al-
though these techniques have valid applications in many games, they are typically used for
genre-specific game AI. Emergent behavior is great for simulating fluid movement, animations
and flocking behavior. Rule-based systems are good at handling non-sequential behavior in
games with a discreet set of rules such as many tactical and turn-based games. Planning has
been used for action games and provides modular, goal-directed and autonomous behavior,
but can be difficult to use in practice.

Finally, we have seen the applicability of scripting languages (section 2.7.5) for easing the
development process.

We have chosen to use behavior trees for a number of reasons. First, it combines some of
the best qualities of the most popular approaches to decision making such as FSMs, HFSMs,
planners and scripting. It is a novel technique that has gotten much focus and gained a lot
of popularity, but has yet to become fully standardized in the game industry. Behavior trees
also propose an intuitive and convenient way of thinking about behavior in terms of modular,
self-contained, building blocks that can be combined to form more complex behavior. This
view could make it easier for game designers to design the desired behavior.

In the next chapter we will more thoroughly explain the concepts and inner workings of
behavior trees. Following that, in chapter 4, we will describe how we use behavior trees to
create an editor to make it easier for game designers to design character-based behavior.
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Chapter 3
Behavior trees

In section 2.7.6 we introduced the behavior tree (BT) technique as a synthesis of some of the
most popular game AI techniques and noted the rising popularity of this novel technique. In
this chapter we will examine more closely the details of behavior trees and why it is better
suited for creating character-based AI than many other common techniques. We look at how
behavior trees are defined and used in the literature but also create our own interpretation
and implementation of a behavior tree along the way.

3.1 Searching in behavior trees

The main responsibility of any character-based game AI (and most other types of game AI) is
to handle decision making, i.e. action selection, [42, sec. 1.2]. In section 2.7.6 we mentioned
that the action selection in behavior trees is handled by searching through the tree. The
internal nodes of a behavior tree specify how the search should be directed and the leaf
nodes are encoded with the actions to perform when the search reaches that node. A path
from the root to a leaf specifies a course of action and the available paths are searched from
“left-to-right”, i.e. by using a depth-first search, [42, p. 340]. depth-first search

As mentioned, the behavior resulting from processing a BT is defined by a search through
the tree. The search is guided by the nodes in the tree and different types of nodes have
different ways of directing the search. There are only few different core types of nodes, each
relying on intuitive patterns to make it easier to reason about the behavior at a higher level.
Figure 3.1 on the following page shows an example of a search from the root of the tree that
attempts to find a suitable behavior for the given situation. The details of searching through
the tree will be explained in the next section as we discuss the different types of nodes in
behavior trees.

The nodes that make up a behavior tree form a powerful model of search and behavior
execution. It can be compared to the basics of a programming language and there are nodes
which act like conditionals, statements, compositionals and control structures, [23, p. 39].
Their usage differs from regular programming languages, however, and provide a simpler and

59
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Figure 3.1: Example of a search through a behavior tree, [23, p. 41]

more intuitive way of reasoning about high-level logic, [23, p. 58]. In the next section we will
go into details about the nodes that make up behavior trees and define their functionality.

3.2 Nodes of a behavior tree

Each node in a BT represent a behavior comparable to the actions in hierarchical network task
planners (section 2.7.4). Likewise, the nodes of BTs decompose recursively into behaviors
of increasing simplicity until the primitive actions of the leaves. Conceptually, a primitive
action is an atomic action that cannot be further decomposed. Depending on the level of
abstraction, a primitive action may be a very low level action (e.g. taking a single step) or
it may be a higher level atomic action (e.g. moving to another location). See section 4.5.3
for more discussion hereof.

As noted in section 2.7.2, imposing a hierarchical structure on primitive actions is essential
for being able to understanding and formulate complex behavior. The abstraction inherit in
the decomposition of behaviors greatly aid in the process of designing behavior. The high-
level behaviors can thus be considered black boxes by designers and their decomposition
largely disregarded for the purpose of defining higher-level behavior.

The nodes encapsulate behavior and can be replaced or interchanged. They can thus be
considered strategies for the behavior tree as per the Strategy pattern, [33, p. 127], [30, p.Strategy pattern

100]. As such, the types of behavior that behavior trees are able to express depend entirely
on the nodes available. A simple behavior tree might have most in common with the types of
behavior that a simple reflex agent (section 2.4) can express. If nodes are included that make
it possible to store and load variables, the behavior tree could be made to express behavior
corresponding to the model-based reflex agent type (section 2.4). Likewise, other techniques
may be integrated into behavior trees through nodes as well. Consider the smart terrain
technique (section 2.6.4) for instance. Special nodes could be used for listening for broadcast
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advertisements from the smart objects in the environment. These nodes could then direct
the search based on advertisements from nearby objects. We will primarily discuss the basic
nodes required for creating the hierarchical structure and function of behavior trees. Some
ideas for more exotic nodes are listed in section 5.2.

In the following sections we will outline the core set of nodes available for handling
behavior and control flow through the BT.

3.2.1 Tasks

A node in a BT is called a task, and everything in a BT is made from tasks. A task, as the task

name suggests, is responsible for performing some work. Tasks express latent computation,
that is, they are encoded with a behavior that they may perform upon execution. This is an
application of the Command pattern, [33, p. 233]. Command pattern

The execution of a task may succeed or fail depending on whether the observed outcome
of performing the task matches the expected outcome, [42, p. 334]. For instance, a task
that is responsible for moving the agent forward will terminate with success if it actually
manages to move the agent forward. The Task class defines the overall interface of all nodes
in the tree. Pseudo code for the interface of the Task class is as shown in listing 3.1. The full
source code listing can be found in section A.4.1 on page 133 in the appendix. The interface
only has a single function, execute, that takes a single argument, agent, specifying which
agent should execute the task. Having the function take an agent as argument is a way of
separating the behavior from the structure it operates on. One instance of a task or behavior
tree can thus be used with multiple agents to simulate the behavior of each of them.

1 c l a s s Task {
2 // Executes the task and re tu rn s with SUCCESS, FAILURE or RUNNING.

3 func t i on execute ( agent )

4 }

Listing 3.1: Pseudo code for the interface of tasks

In addition to terminating the execution in either success or failure, a task can also signal
that the execution is on-going and has not yet reached a conclusion. This return value
is named ”running“ and is relevant for tasks which need several frames (section 2.6.3) of
processing to finish. For instance, a task that determines the trajectory of a rocket may need
several frames to get enough samples to extrapolate the trajectory satisfactory. Likewise, a
(very high level) task responsible for finding and eliminating an enemy may require several
minutes of frame-by-frame execution before the result hereof can be conclusively determined.
The task may then report ”running“ for hundreds of frames while the control flow fluctuates
between the tasks of its decomposition, until the high level task is finally able to terminate
its execution. In this case, the result will be a success if the agent managed to find and
eliminate the enemy and a failure otherwise (i.e. the agent has died, has given up trying to
find the enemy, etc.).

Figure 3.2 on the following page show the flow of control between a parent node and a
generic task node, as illustrated by a state transition diagram. The result of the execution
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Parent

Task

execute  success  failure  running 

Figure 3.2: State transition diagram illustrating the process of executing a single frame of

game AI as seen from the point-of-view of the Parent node

is represented by the return value and, as we will detail later, is used to build complexity in
the tree. In the following sections we will discuss what it means for the execution to succeed
or fail, as it depends on the particular type of task.

3.2.2 Conditions

Some tasks do not change the state of the environment or the agent. Rather, the action it
performs in the world is simply a sensory operation. These ”read-only“ tasks, which only
make observations in the world, are called conditions. They are used for testing assertionsconditions

or assumptions of the environment or of the agent itself. The result of executing a condition
task is the result of the test. A low-level condition task could e.g. be ”Is light intensity
≥ 50%?”, which would depend on the sensory input from the agents light sensor and the
result would either be a success (i.e. true) or a failure (i.e. false) depending on the result
of the test. The result of these tasks are used to filter and guide the control flow of execution
through the tree.

A condition task typically depends on data observable by the agent, thereby utilizing one
or more of the agents sensors (section 2.2.1). A higher-level condition could be ”Is an enemy
in sight?”. In that condition, the agents vision would be utilized to scan for enemy agents.
If enemies were spotted, the result of execution would be a success, otherwise it would be a
failure. If the agent were somehow unable to use its vision, the execution would also fail as
no enemies could be seen.

The condition task inherits from the Task class and implements the interface, that is, the
execute function.

3.2.3 Actions

The tasks that perform actions in the game environment are called actions. They may alsoactions

utilize some sensory facilities, same as conditions, but the primary function of actions is to
alter the state of the world or the agent. Examples of actions could be to play an animation
on the model of the agent, play an audio-file or use an object in the game world.
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The result of the execution of the task depends on whether the desired action is suc-
cessfully performed. As previously mentioned, the task Move Forward succeeds if the agent
successfully moves forward and fails otherwise. The task may fail if the agents motor devices
are broken, if the agent is stuck, paralyzed or dead etc.. Actions utilize the actuators (section
2.2.1) of the agent for performing actions in the environment.

Like the condition task, the action task also inherits from the Task class and implements
the execute function from the Task interface.

3.2.4 Composite tasks

To be able to compose tasks into a hierarchical structure, we need a task that can have
subtasks. This type of task is called a composite task. A composite task is an application composite task

of the Composite pattern (figure 3.3(a)), [33, p. 163], [30, p. 111]. The Composite pattern Composite pattern

enables a tree-structured hierarchy of objects implementing a shared interface. In this case,
the interface is that of the Task class.

(a) UML class diagram of the composite pattern, [33, p. 163]

Parent

Composite Task

execute  success  failure  running 

  Subtree  

execute 

   . . .   

 execute

  Subtree  

execute

(b) Execution process of a composite task.

Child transitions are disregarded for brevity.

Figure 3.3: Two different views on a composite: (a) shows the class diagram of the com-

posite pattern and (b) illustrates the composite task in behavior trees

The composite task implements and extends the interface of the Task class. It holds a list
of child tasks and include functionality for adding and removing children. Listing 3.2 shows
the pseudo code for the interface of the composite task node. The full source code listing can
be found in section A.4.1 on page 133 in the appendix.

1 c l a s s CompositeTask : Task {
2 // L i s t o f c h i l d ta sk s

3 c h i l d r e n : Task l i s t

4

5 // Reference to the cu r r en t l y running task
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6 ac t i v eCh i l d : Task

7

8 // Adds the g iven ch i l d task to the l i s t

9 func t i on addChild ( task )

10

11 // Removes the ch i l d task from the l i s t

12 func t i on removeChild ( task )

13

14 // Executes the ch i l d ta sk s . Returns SUCCESS, FAILURE or RUNNING.

15 func t i on execute ( agent )

16 }

Listing 3.2: Pseudo code for the interface of the composite task

A composite task cannot perform any behavior by itself. Its behavior comes from that
of its child tasks and their composition. It is the responsibility of the composite task to
maintain an ordering among its children and determine the control flow. Figure 3.3(b)
shows the (rather abstract) execution of a composite task. The execution depends on the
ordering and control flow of the children, as specified by the concrete implementing of the
CompositeTask interface. The control flow typically depends on the results of the execution
of the children. There are many different ways in which the control flow of the children can
be handled.

Before we look at concrete implementations of composite tasks, let us first clarify how the
actual execution of the behavior tree works. In each frame of game AI processing, a behavior
tree (either the same or different ones) is applied to each agent. For brevity, let us focus the
discussion on a single agent executing a single behavior tree.

So, we have an agent and need to execute its behavior tree in order to compute and
perform the behavior of that agent. The root of a behavior tree will always be a composite
task1. In the game AI processing step, the agent will invoke the execute-function of the
root task with itself as argument. If this is the very first time the behavior tree has been
executed we will simply traverse it as determined by the nodes. If we have executed the
tree before, however, there is most likely a task already actively running somewhere in the
tree. The variable activeChild refers to this task. It could, for instance, be a repeating
patrol behavior. We would like to give the active task more processing time by continuously
executing it until it terminates. The composite root task would then execute its active child
task, which would again execute its active child task etc.. Consequently, we get a single
recursive path down through the tree until we encounter the active task and can continue
to execute it. This concept is illustrated in figure 3.4 on the facing page. This search takes
O(log n) time (where n is the number of nodes in the tree) but can be reduced to O(1)2.

The two most important composite tasks are called ”sequences“ and ”selectors“ and will
be discussed in the next sections, [42, p. 335].

1If it is not, the behavior of the agent can only be a single primitive task

2This can be done simply be having a special root node that knows the active task(s) and can execute

them directly. It also requires all tasks to have a reference to its parent task.
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Figure 3.4: Illustration of the execution of active tasks in the behavior tree. Blue nodes

symbolize the currently active nodes.

3.2.5 Sequences

One concrete type of composite task is the Sequence task, [42, p. 335][18]. The sequence Sequence

task is responsible for executing its child tasks in sequence, hence the name. It represents
the collective behavior of its child tasks. For instance, consider the sequence that has the
children Acquire Food, Prepare Food and Eat Food as shown in figure 3.5.

Acquire Food Prepare Food Eat Food

"Satisfy hunger"
Sequence

Figure 3.5: Behavior tree consisting of a sequence task with three child tasks

The sequence could be considered the behavior of satisfying hunger by (somehow) acquir-
ing, preparing and eating food. Because the tasks in a sequence are sequential, each task
depends on the successful execution of all previous task in the sequence. If the Acquire Food

tasks fails to provide food, then we cannot proceed with the Prepare Food task as we have
no food to prepare. Likewise, if the Acquire Food task succeeds but Prepare Food fails (i.e.
we have no stove or fire) then we do not want to execute Eat Food. In both these cases, we
will also have failed the higher level responsibility of the sequence, that is, to satisfy hunger.
Therefore, in a sequence task, we will execute the child tasks in order, but fail the entire
sequence immediately if a task fails. In other words, sequences deal with the success of a
child task by moving on to the next child task, and failures by bailing out and failing the
entire sequence. Conceptually, the execution and result of sequences can be thought of as a
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lazy AND (i.e. && in C and Java) of the children.

Algorithm 2 shows the pseudo code for the execute function of the sequence task. It
iterates the list of children, executing each child until one does not succeed (i.e. returns
”failure“ or ”running“) or it has reached the end of the list. The full source code listing can
be found in section A.4.4 on page 138 in the appendix.

Algorithm 2 Sequence (disregarding running tasks for brevity)
1: procedure execute(agent)
2: for child in children do

3: status← child.execute(agent)
4: if status 6= SUCCESS then

5: return status

6: end if

7: end for

8: return SUCCESS

9: end procedure

Figure 3.6 illustrates the inner workings of an example sequence task as a state transition
diagram. Here we also disregard the ”running“ transitions for brevity.

Parent

Sequence

execute success failure

Task1

execute failure

Task2success

failure

Task3success

success failure

Figure 3.6: State transition diagram of a sequence task with three child tasks

Figure 3.7 on the next page illustrates the same behavior tree under two example execu-
tions. In 3.7(a) we examine the case in which Task1, Task2 and Task3 succeed. The Parent

task will execute the Sequence, which will then in turn execute Task1, Task2 and Task3

and then finally return to Parent with success. The execution flow thus becomes: Parent

→ Sequence → Task1 → Task2 → Task3 → Sequence → Parent, where → symbolizes the
invocation of the execute() function of the Task interface and → symbolizes the change of
execution caused by a successfully completed task execution.

Let us now look at the same behavior tree in a different situation in which Task2 fails.
This is illustrated in figure 3.7(b) on the facing page. Here, Parent will execute Sequence,
which will successfully execute Task1 and continue to Task2 which will fail. The entire
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Parent

Sequence

execute success failure

Task1

execute failure

Task2success

failure

Task3success

success failure

(a) Execution where all children succeed

Parent

Sequence

execute success failure

Task1

execute failure

Task2success

failure

Task3success

success failure

(b) Execution where Task2 fails

Figure 3.7: Two different example executions of the child tasks of a sequence task

Sequence will then fail and will return the control flow to Parent with that result. The
execution flow is thus: Parent → Sequence → Task1 → Task2 → Sequence → Parent,
where → symbolizes the change of execution caused by a task that fails during execution.

3.2.6 Selectors

The Selector task is the complement of the sequence task, [42, p. 335], [16]. The selector Selector

task only needs one of its child tasks to execute successfully to succeed and fails only if all
its child tasks fail. It thus deals with failures by moving on to the next child task and with
success by bailing out with success. The selector task is used for picking the best behavior
for the given task. This form of planning that is based on a local set of available behaviors
is called reactive planning, [42, p. 340]. It is handled by a ordered list of tasks and a reactive planning

fall-back mechanism for when a behavior fails and another needs to be attempted instead. In
our previous example, we might have several different ways to acquire food in the Acquire

Food task. This scenario is shown in figure 3.8.

"Acquire Food"
Selector

Has Food? Buy Food Hunt Animals Collect Berries

Prepare Food Eat Food

"Satisfy hunger"
Sequence

Figure 3.8: Several different approaches to the behavior of acquiring food

First off, if we already have food available we will just use that, thus solving our problem.
If we do not have any food available, we might – as a first approach – simply go to a store
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and attempt to buy food. If we have no money or the store is closed we need a fall-back
solution. One such solution may be to bring down and cook an animal or collect and eat
berries. Each task – if it succeeds – fulfills the higher level goal of acquiring food, although
the means of doing so is very different. The selector thus enables the agent to choose between
different solutions to a single problem. The execution and result of a selector can be thought
of as the lazy OR (i.e. || in C and Java) of its child tasks.

Algorithm 3 show the pseudo code for the execute function of the selector task. It
iterates the list of children, executing each child until one does not fail (i.e. returns ”success“
or ”running“) or it has reached the end of the list. The full source code listing can be found
in section A.4.5 on page 139 in the appendix.

Algorithm 3 Selector (disregarding running tasks for brevity)
1: procedure execute(agent)
2: for child in children do

3: status← child.execute(agent)
4: if status 6= FAILURE then

5: return status

6: end if

7: end for

8: return FAILURE

9: end procedure

Parent

Selector

execute success failure

Task1

execute success

Task2failure

success

Task3failure

success failure

Figure 3.9: State transition diagram of a selector task with three child tasks

Figure 3.9 illustrates an example selector task, disregarding the ”running“ transitions
for simplicity. Comparing this state transition diagram to the one for the example sequence
(figure 3.6) it can be seen that the transition conditions have simply been swapped, effectively
inverting the control flow as compared to the sequence task.

Figure 3.10(a) on the next page shows an example execution in which Task1 fails and
Task2 succeeds. The Selector node simply falls back to the next child task (Task2) and
executes that instead. Task2 succeeds and the selector has fulfilled its responsibility and can



3.2. Nodes of a behavior tree 69

Parent

Selector

execute failure success

Task1

execute success

Task2failure

success

Task3failure

failure success

(a) Execution where Task1 fails and Task2

succeed

Parent

Selector

execute failure success

Task1

execute success

Task2failure

success

Task3failure

failure success

(b) Execution where all children fail

Figure 3.10: Two different example executions of the child tasks of a selector task

thus bail out with success. The execution process is: Parent→ Selector→ Task1→ Task2

→ Selector → Parent. In figure 3.10(b) we have the situation in which all the child tasks
of the selector fail. In that case, the selector has failed to find a solution to the problem and
also fails. The execution process is: Parent → Selector → Task1 → Task2 → Task3 →
Selector → Parent.

3.2.7 Decorators

During the construction of a behavior tree a situation will often arise in which a task needs to
be extended with some additional property or functionality. Suppose that we, in our previous
example, instead of acquiring food once, we would like to acquire food a varying number of
times. We might use this to gather more food when winter is approaching, for instance. How
can we create a behavior tree that allows for continuously repeating the Acquire Food task?
At this point, we really have only one choice for implementing this behavior in the tree and
that is to hardcode it directly into the task. This would indeed be a very undesirable solution
as we loose the Acquire Food primitive and ruin the composite structure.

A more suitable approach would be to decorate the task with a certain property or added
functionality without altering the behavior of the original task. A task for doing this is called
a decorator, [20]. It is an application of the Decorator pattern, [33, p. 175]. The pseudo decorator

Decorator patterncode for the execution function of a decorator is shown in algorithm 4.

Algorithm 4 Decorator
1: procedure execute(agent)
2: Pre-execution code

3: status← decoratedTask.execute(agent)
4: Post-execution code

5: return status

6: end procedure
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In our example, we could have a decorator task that would loop the execution of the
decorated task a number of times. This addition to the example behavior tree is shown in
figure 3.11.

"Acquire Food"
Selector

Has Food? Loop: n times

Acquire Food

Prepare Food Limit: 3/day

Eat Food

"Satisfy hunger"
Sequence

Figure 3.11: The example behavior tree extended with a loop decorator on Acquire Food

and a limitation filter on Eat Food

The most common use of a decorator tasks is as a filter, [20]. A filter controls whetherfilter

the decorated task (or subtree) should be executed or not. In our example, we have a
limitation filter on Eat Food ensuring that the task is executed no more than three times
per day (in the game). The filter effectively prunes the branches of the tree and ensures
that the decorated subtree is only searched if the filtering condition is met. Other commonly
used filters include timer filters that require a given amount of time between executions and
semaphore filters, discussed in the next section. The pseudo code for a filtering decorator is
shown in algorithm 5. The full source code listing can be found in section A.4.8 on page 142
in the appendix.

Algorithm 5 Filter decorator
1: procedure execute(agent)
2: if filter condition is met then

3: Pre-execution code

4: status← decoratedTask.execute(agent)
5: Post-execution code

6: return status

7: end if

8: return FAILURE

9: end procedure
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3.2.8 Semaphores

Consider a scenario where several agents, who all have the Prepare Food task, share the
same stove. This way, only one agent is able to prepare food at a time. This is an instance of
a more general problem in computer science, known as a race condition, in which we need race condition

to avoid that multiple processes or threads use a common resources simultaneously, [54, sec.
6.3.2]. This problem is often handled by using a mutual exclusion (mutex) algorithm, [54, mutual exclusion

p. 496]. In behavior trees, we have a decorator called a semaphore filter or allocator, semaphore filter

allocator[21]. It relies on semaphores for handling concurrent resource management, [54, sec. 6.3.3].

semaphores
In our stove example, we would need a binary semaphore (i.e. the semaphore equivalent

binary semaphore
to a mutex) to handle access to the resource by flagging it as either locked or unlocked. This
functionality is shown in figure 3.12, in which the stove resource is locked while the Prepare

Food task is executing. For simplicity, we have not handled whether failing to acquire the
lock would result in a failure or in simply waiting for the lock to be released.

"Acquire Food"
Selector

Has Food? Acquire Food

Lock: Stove

Prepare Food

Eat Food

"Satisfy hunger"
Sequence

Figure 3.12: Restricting access to critical or limited resources by using the semaphore

decorator

Suppose the agents had access to a larger stove, which two agents could use simultaneously.
We could implement this functionality by a counting semaphore allowing two acquisitions counting semaphore

of the lock before access to the resource is denied.

Semaphore filters have many practical applications. For instance, suppose we have an
action that simulates that the agent is speaking by playing an audio file and doing lip syn-
chronization. When the agent is speaking the voicebox of the agent should be locked, as
should the bones3 of the mouth. The illusion of realism would be instantly broken if the
agent was to make two simultaneous sounds or speaking while inhaling from a cigarette.
Thus, such an action would be well suited for decoration by semaphore filters to lock the
concerned resources.

Another usage of semaphore filters is for managing group behavior. A semaphore deco-

3Here, ”bones“ represent fictional bones used for handling the animation of game models in techniques

such as skeletal animation
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rator could be used to limit the number of squad members able to engage the enemy at the
same time. This (critically acclaimed) type of squad behavior is detailed in section 2.7.2.

Pseudo code for a semaphore decorator can be found in [42, p. 349-351]. A concrete
implementation of a semaphore decorator requires extending the task interface to signal the
beginning and end of execution. This is needed to be able to lock (i.e. acquire()) and
unlock (i.e. release()) the resource to signal when it is in use, [42, p. 351]. We provide an
extended task interface in listing 3.3 on page 74.

3.2.9 Parallels

Concurrency is an important feature in behavior trees as well as in other AI technologies
(section 2.7.2). Consider, for instance, that we have a number of agents who share a stove
to prepare food, as in the example in the previous section. How would we go about creating
behavior for the agents to wait (doing idle behavior) until the stove is available? One solution
is to have condition to check the availability of the stove, and if it is unavailable then to
proceed with some idle behavior. However, suppose the idle behavior is a prolonged behavior
that takes a long time to finish. It could be smoking a cigarette or watching a television
show. With the tasks currently at our disposal, we wouldn’t be able to check the availability
of the stove until we are finished with the idle behavior. In other word, we have no means
of prematurely terminating the idling behaving for proceeding with more important tasks.
This type of problem can be handled by the parallel task, [14].parallel

The parallel task is a composite task, running all its child tasks in parallel, that is,
they are conceptually executed at the same time. Although the are conceptually executed
concurrently, they may in fact be executed one-by-one in a cooperative scheduling fashion,cooperative scheduling

[42, p. 351-352]. This way, each child task is still executed in every frame, but there is no
overhead (and likewise; no gain) associated with using multiple concurrent threads. Different
policies can be used for determining the result of the parallel, e.g. to succeed if one childpolicies

task succeeds, fail if one fails, succeed if all succeed, fail if more than half fail, etc..

In practice, we have two overall applications of parallel tasks. These are to model inde-
pendent parallel behaviors and as high level assertions.

Independent parallel behaviors is in effect the concept of running subtrees concurrently.
This application is mostly focused on doing multiple behaviors simultaneously. For instance,
consider an agent who is talking in walkie-talkie and smoking a cigarette while patrolling an
area. These behaviors all need to be maintained concurrently, and a way for doing so it to
use a parallel task. Each behavior would then have a subtree of its own and each tree would
be executed in each frame.

A high level assertion (or ”read-only concurrency“) application can be illustrated using
this example as well. Suppose the patrolling agent spots an enemy. It would then need to
react by stopping everything it was doing (talking in walkie-talkie, smoking a cigarette and
patrolling the area) and engage the enemy. In other words, we have high level assertions that
invalidate an entire subtree. You can use a parallel to monitor (global) assertions/assump-
tions at a higher level. In this case, the assertion could be Enemy spotted? in which case
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we would bail out of all concurrent behaviors and engage the enemy.
Another example of high-level assertions is the previously mentioned problem of an agent

having to wait for the stove to become available. The behavior is illustrated in figure 3.13.

"Acquire Food"
Selector

Has Food? Acquire Food

"Prepare Food or Idle"
Sequence

"Idle until stove available"
Parallel

Lock: Stove

Idle Behavior Stove Available? Prepare Food

Eat Food

"Satisfy hunger"
Sequence

Figure 3.13: Using a parallel task to react to an event in the environment

We have a never-ending Idle Behavior task that runs in parallel with a Stove Available?

assertion. Because the tasks are run in parallel, the Stove Available? assertion is tested
in each frame. The assertion will return success the instant the stove is available, thereby
returning a success signal to the parent4 and terminating the Idle Behavior task. Because
the parent is a sequence task, it will thus proceed to executing its other child task, that
is, acquiring the stove resource and proceed with the Prepare Food task. When that task
terminates successfully (i.e. when the food is prepared), we will proceed to the Eat Food

task. In the next section we will introduce a new task that allows for a more elegant way of
handling such situations.

In the example, we simply assumed that we were able to terminate the parallel behavior
and thus also the running Idle Behavior task. To be able to bail out of subtrees it is
required that we have a graceful way of prematurely terminating the running tasks. For this
purpose, we need to extend the interface of tasks to be able to initiate the behavior as well as
gracefully terminate it (either normally or prematurely). The extended interface5 is shown
in listing 3.3 on the next page.

4Assuming the parallel has a policy that makes it succeed on one succeeding child task and only fail if all

child tasks fail

5This extended interface could also have been implemented in a new class, ExtendedTask, that extended

the original Task class. However, because we need to be able to invoke these new functions recursively

through the tree, the CompositeTask class, Decorator class etc. would need to be modified to implement

ExtendedTask instead of Task. No class other than ExtendedTask would implement Task, thus eliminating

the need for maintaining it as a separate interface.
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1 c l a s s Task {
2 // Handle the i n i t i a l i z a t i o n o f the task execut ion

3 func t i on s t a r t ( agent )

4

5 // Handle te rminat ion o f the task g r a c e f u l l y ( normally or prematurely )

6 func t i on stop ( agent )

7

8 // Execute the task . Returns SUCCESS, FAILURE or RUNNING.

9 func t i on execute ( agent )

10 }

Listing 3.3: Extended task interface to enable tasks to perform operations on initialization

and termination

As an example, take the cigarette smoking behavior. The start-function may initialize
a particle system to create smoke and place a ”smoking“ flag on the agents blackboardparticle system

(section 2.7.2) for other agents to comment on (e.g. “Those cigarettes are going to be the
death of you”). The stop-function may then involve the agent dropping the cigarette and
removing the ”smoking“ flag from its blackboard.

The full source code listing for the parallel task can be found in section A.4.6 on page 140
in the appendix.

3.2.10 Prioritized lists

The application of prioritized lists are very close to that of high level assertions, but usesprioritized lists

a more pragmatic approach. It is used for selecting the highest priority relevant child task
for execution. The concept of priority is derived from the ordering of the children, i.e. the
first child is considered the highest-priority task and the last child is considered the lowest
priority task. Each child has an activation desire for indicating the relevancy of executingactivation desire

that task, [37]. Some systems use a floating point number for determining the relevancy.
However, this poses a scalability problem when increasing the number of competing tasks,
[37]. Other systems use a binary value for determining relevancy, in which case the test may
be considered a precondition for the task.precondition

In listing 3.4 we have extended the task interface of listing 3.3 even further. Here, we
have added a precondition-function that corresponds to a binary relevancy value.

1 c l a s s Task {
2 // Handle the i n i t i a l i z a t i o n o f the task execut ion

3 func t i on s t a r t ( agent )

4

5 // Handle te rminat ion o f the task g r a c e f u l l y ( normally or premature )

6 func t i on stop ( agent )

7

8 // Boolean re l evancy value ( p r e cond i t i on s f o r execut ing the task are met )

9 func t i on pre cond i t i on ( agent )

10

11 // Execute the task . Returns SUCCESS, FAILURE or RUNNING.

12 func t i on execute ( agent )
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13 }

Listing 3.4: Extended task interface that enables the parent to test the relevancy of

executing the task

Using a binary relevancy value, the execution of a prioritized list becomes the same as
that of the selector task, with two differences. First, before trying to execute a child task, we
need to test if it is relevant for that task to execute. If not, we skip it just like if we had failed
an execution of a child task in the selector task. Second, we start by processing the highest
priority tasks first in each frame, regardless of a task is already running, [38, p. 48]. This way,
if a higher-priority task becomes relevant, we can switch to that task instantaneously and
not having to finish the execution of the lower priority task first. This is great for reactive
behavior (section 2.2.3), that is, quickly reacting to changes in the environment, but requires
that we have a graceful way of prematurely terminating the running task. The pseudo code
for the execute function of the prioritized list task is shown in algorithm 6. The full source
code listing can be found in section A.4.7 on page 141 in the appendix.

Algorithm 6 PrioritizedList
1: procedure execute(agent)
2: for child in children do

3: if child.precondition(agent) then

4: if child 6= activeChild then

5: activeChild.stop(agent)
6: end if

7: status← child.execute(agent)
8: if status = RUNNING then

9: activeChild← child

10: return status

11: else if status 6= FAILURE then

12: return status

13: end if

14: end if

15: end for

16: return FAILURE

17: end procedure

An example of using the prioritized list task is shown in figure 3.14 on the next page.
Here we use it to handle the example problem (discussed on page 72) of an agent having to
wait for the stove to become available.

We would like for the agent to use the stove as the first priority but failing that, due to
it being unavailable, we would like to proceed with an never-ending idle behavior. In each
frame, we would then initially test the relevancy of using the stove (i.e. the precondition

function) and only if this fails, will we proceed with the idling behavior. This will continue
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"Acquire Food"
Selector

Has Food? Acquire Food Lock: Stove

Prepare Food

Idle Behavior

"Prepare Food or Idle"
Prioritized List

"Satisfy hunger"
Sequence

Eat Food

Figure 3.14: Using a prioritized list to get a concurrent monitoring of the availability of

the stove while falling back to performing idle behavior. If the stove becomes available, the

idle behavior is prematurely terminated.

until the stove is available, in which case we would invoke the stop function on the already
running behavior and instead executing the higher priority task of acquiring the stove resource
and then executing the Prepare Food task. Only when the Prepare Food task successfully
terminates will we proceed to the Eat Food task.

3.3 Implementing behavior trees

As mentioned in section 3.1, the tasks of behavior trees form a powerful model that is compa-
rable to the basics of a programming language. The tasks provide conditionals and statements
in the form of conditions and actions, composition from sequences and if-then-else control
structures from selectors. Behavior trees are efficient because they have the same control flow
as would a well-written script for handling the same behavior, [23, p. 50]. They can even be
optimized by using search techniques such as saving and reusing the result of computations
of subtrees or using a limitation on the frequency with which behaviors can execute. This
effectively prunes the tree as some branches can be simply disregarded, [36]. In concrete im-
plementations of behavior trees, the tasks of the tree would often be references to a look-up
table of tasks, [42, p. 369], [23, p. 66]. Such an approach may be considered an application
of the Flyweight pattern, [33, p. 195], [30, p. 115]. Using a look-up table of tasks theFlyweight pattern

behavior tree is actually not a tree in computer science terminology but rather a directed

acyclic graph (DAG) as the same task may occupy several different nodes in the graph.directed acyclic graph

So how do we actually implement game AI as a behavior tree? Starting from scratch,
we first need to implement the interface for the Task class. We also need to implement the
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composite Sequence and Selector classes to be able to combine the tasks in a hierarchical
fashion. Which concrete conditions and actions we need depends on the game (that is, the
task environment) we design the game AI for. Generally, the tasks represent the observations
and actions that the game agents are able to perform in the environment. We will go
into further detail about both the technical considerations and the design considerations
of implementing behavior trees in section 4.5.

3.4 Designing behavior trees

When designing game AI as behavior trees it is important to embrace patterns in the design.
During the design process some common patterns tend to emerge. It is an important design
challenge to notice these recurring structures, as they are candidates for being factored out
as high-level tasks in the tree. For instance, consider the sequence task in figure 3.5 having
the child tasks Acquire Food, Prepare Food and Eat Food. If we need to create a new task
to encapsulate the behavior of making dinner for another agent, this might be comprised of
the subtasks Acquire Food, Prepare Food and Serve Food. The first two tasks would then
occur in both subtrees and would be obvious candidates for composing into a higher level
task. In figure 3.15 we illustrate two different subtrees, both of which has a look-up decorator
task pointing to the same decorated task. The decorated task, Acquire and Prepare Food,
is stored in a look-up table and is references through the decorators.

Look-up

"Acquire and Prepare Food"
Sequence

Acquire Food Prepare Food

Look-up Eat FoodServe Food

"Satisfy hunger"
Sequence

"Serve food"
Sequence

Figure 3.15: Illustration of the concept of look-up decorators

The simplicity of this example suggests there is not much to be gained from grouping
the two tasks. However, it provides both design advantages as well as technical advantages.
The overall design becomes simpler and more intuitive as the tasks become continuously
higher-level, thus allowing designers to focus on high-level behavior rather than the details
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of the lower levels. Further, it helps the designers to mix and match between the available
high-level task rather than having to build up behaviors from primitive tasks each time. With
regards to the technical aspects, the trees become more maintainable and extendable. If, for
instance, we need to add an Is Poisonous? condition between the Acquire Food and the
Prepare Food tasks in the behavior tree in figure 3.15, we can simply do so in the higher
level Acquire and Prepare Food task, and the change will be reflected throughout the tree.

3.5 In conclusion

In section 2.7 we looked, among other things, at the three techniques from which behavior
trees have inherited some properties. Behavior trees are a synthesis of HFSMs, planners and
scripting (figure 3.16), [42, p. 334].

Figure 3.16: The techniques from which behavior trees has been synthesized, [23, p. 14]

In this chapter we have examined behavior trees more closely. Behavior trees are a
compromise between HFSM, planners and scripting. However, when compromises are made,
some things that might have been desired are often lost. Let us compare the properties
of behavior trees against the techniques from which it was synthesized. The following list
provides a short summery of the major advantages or disadvantages of behavior trees and its
related techniques. The ”+“ specifies an advantage, and the ”−“ a disadvantage.

• Hierarchical finite state machines

+ Great for designers, as the concept behind them is simple and intuitive. It is easy
to visualize different states and their connection to other states.

+ Provides low-level reactive control. It is easy to react to changes in the environment.

− Takes a lot of work to implement [42, sec. 5.3.9]. They can be difficult for program-
mers to implement and for designers to use.

− Are hard to make goal-directed.

• Planners

+ Have modular, self-contained, actions.

+ Are autonomous and goal directed by searching for a path through the available
action to a solution.
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− Do not do well in practice, [23, p. 20]. Difficult to integrate into game code.

− Are not good at handling errors that occur in the plan.

• Scripting

+ Is flexible. Scripting languages are Turing complete and can compute anything.

+ Is well-known. Scripting has widespread usage throughout the game industry.

+ Is data-driven. Helps with the separation of the game engine and game content.

− Is difficult to introspect. It is not intuitive what the resulting behavior will be.

− Is not well suited for designers.

• Behavior trees

+ Are the best compromise between the HFSMs, planners and scripting, [23, p. 16].
Works well in practice.

+ Good at local replanning, i.e. reactive planning.

− Are not as good as any of the other approaches individually.

To sum up, HFSMs are intuitive and reactive, planners are autonomous and purposeful
and scripting is flexible and data-driven, [23, p. 21-22]. It is exactly these qualities that the
behavior tree technique attempts to synthesize (figure 3.17(a)).

Behavior trees are an improvement over HFSM in that the game AI programmer and the
game designer do not have to think about the transitions in the FSMs. Behaviors are simply
put together using high level building blocks such as sequences and selectors. Behavior trees
are an improvement over planners because they are very simple to implement. However,
behavior trees can only provide reactive planning, and not full look-ahead planning, meaning
that some problems cannot be prevented elegantly. Behavior trees are an improvement over
scripts because they make it easier to handle errors. The scripts can be used in tree without
the need for checking a lot of preconditions. It can simply use a selector to automatically fall
back on other solutions.

(a) Desirable properties of behavior trees (b) Some extensions for specializing behavior trees

Figure 3.17: Illustration of properties of behavior trees
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Behavior trees provide a good solution for handling many of the practical problems that
are encountered in game development. Although it may lack some specialized features, such
as full planning, it will often be an acceptable middle ground for both game AI programmers
and game designers. Like FSMs (section 2.7.2), behavior trees can also be extended to suit
more specialized needs. Figure 3.17(b) on the previous page illustrates some directions in
which behavior trees can be extended for serving more specific purposes. Section 5.2 on
page 120 list some ideas on how behavior trees may be extended.

In the next chapter we will extend behavior trees in the direction of a more intuitive &
reactive/integrated & flexible solution (figure 3.17(b)). We will discuss the development of
an editor for making it easier to design the desired behavior using behavior trees.



Chapter 4
Designing the behavior tree workbench

The “Behavior Tree Workbench” is a system designed to make it easier to model character-
based game AI. It bridges the gap between the game AI implementation and the actual
behavior of the agent in a game.

In other words, it creates the link between the generating mechanism and observed be-
havior of the game AI. The generating mechanism is the concrete implementation of actions
of the agent and the decision making process for choosing which action to perform next.
The observed behavior is how the end user, i.e. the player, perceives the behavior in the
game. It is a reflection of the underlaying game AI technique, but even more so of the design
choices of the game designer. A game may have a state of the art AI technique, but that
is immaterial if the game designers or the tools at their disposal are not able to express the
desired behavior:

“In the end, if an NPC looks, talks and walks like a duck, then it
will probably be perceived as a duck, regardless of its actual inner
workings, [38, p. 47] ”

The purpose of the behavior workbench is first and foremost to ease the behavior modeling
process of the game designers. However, we need to acknowledge that without the game AI
programmers there would not be anything to design for the game designers. As mentioned in
section 2.6.2, the game AI programmers build the platform on top of which the behavior is
designed. So, for the workbench to be part of the content creation pipeline, it must not only
facilitate the game designers, but also the game AI programmers. That is, it must create the
link between the game world and the workbench.

The behavior tree workbench is made up of three components: the game component, the
behavior tree framework and the editor component. The game component (figure 4.1 on the
next page, left) is the concrete game for which we want to design behavior for agents. The
behavior tree framework is in the game component and handles the execution of game AI

81
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Figure 4.1: The Behavior Tree Workbench. On the left is the game component and on the

right is the editor component.

using behavior trees and facilitates the communication between the game component and the
editor component. The editor component (figure 4.1, right) makes it possible to design the
actual behavior of agents by combining tasks into a behavior tree.

The workbench needs to facilitate the workflow of both the game AI programmer and
the game designer. As such, it needs to meet a lot of requirements from both parties. Most
importantly for the game AI programmer, there needs to be a framework for easily interfacing
between the editor and the game. For the game designer, it needs to be easy to create, tweak
and test behavior.

Finally, in recent years, the concept of modding has gained a footing and is consideredmodding

a selling point for many games, [65]. Modding is slang for “modifying” and, w.r.t. games,
refers to the concept of modifying the original games with the purpose of creating a different
gaming experience or adding more custom content. Modding is usually done by editing
directly in the source code and resources of the games, but some games provide entire suites
of tools for making modifications. A secondary goal for the workbench is to function as a
modding tool for players to experiment with.

In this chapter we will go into detail with the design and implementation of the behavior
tree framework for interfacing with the editor, the editor itself, an example game implemen-
tation and the flow of data between components. First, we will take a brief look at the system
as a whole, and then go into more detail with the individual components in the following
sections.
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4.1 Description of the workbench

The behavior tree workbench consists of two interacting components: the game component
(which includes the behavior tree framework) and the editor component. The components
are illustrated in the figure below. The two components have different responsibilities which
will be detailed in the next sections.

Game Mode Edit Mode

Figure 4.2: Illustration of the conceptual components of the behavior tree workbench

There are numerous reasons for splitting the workbench into two parts. We want the editor
to be data-driven and more general-purpose than many of the current tools for creating game
AI. For this purpose, we need a clean separation between the game and the editor. This is,
in concept, an application of the Strategy pattern [33, p. 315], allowing components to be Strategy pattern

replaced by others with different functionality as long as the interface remains the same.

The editor knows nothing about the game other than the data sent by the game at
runtime. This means we can replace the game with an arbitrary other system as long as the
same interface is implemented. The game do not know anything about the editor either. The
editor can thus also be replace with another component with the same interface. Additionally,
this results in a game AI that is data-driven and will be more easily maintainable and
extendable.

4.1.1 Web-based workbench

We have chosen to make the workbench web-based. The tools for creating web-based appli-
cations are somewhat cumbersome compared to those available for creating standard applica-
tion. However, having a web-based workbench has a lot of advantages. It is highly accessible
as any device with a browser will be able to access and use it. There is also no software
distribution, installation or updating required, so the workbench will always be available in
its newest version.

The concrete technology we use for the game component is a Unity1 (section 4.3.1) Unity

object and the editor component is an Ext JS2 (section 4.4.3) framework (figure 4.3 on the Ext JS

following page).

1http://unity3d.com

2http://sencha.com/products/js

http://unity3d.com
http://sencha.com/products/js
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Figure 4.3: The concrete web-based components of the behavior tree workbench

Unity is at its core a multiplatform all-round game development tool (section 4.3.1). Unity
is a highly popular3 tool for game development enthusiasts as well as professionals. It can
be used for all aspects and phases of game development. From importing textures and 3D
models, to scripting game logic and game AI, to handling terrain, shaders, lights, physics,
audio, networking and much more. Finally, it can be used to deploy the finished game to a
variety of different platforms include the PC, Mac and the web. Additional licenses can be
bought to deploy to the Wii as well as iPhone and Android cell phones.

We have chosen Unity primarily for its ability to publish web-based games using the
Unity Web Player Plug-in, [4, sec. “Features – Deployment”]. Any game created in UnityUnity Web Player

can be embedded and played in a web page through a browser4. The size of the plug-in is
small (about 3 MB) and it can be installed without restarting the browser. The plug-in also
enables communication between the Unity web-player object and the web site it is embedded
in. This is of great importance for our purpose as it provides a painless mechanism for
exchanging data between the game and the editor (section A.2).

For the editor we have chosen to use JavaScript and Ext JS (section 4.4.3). Ext JS is an
open-source framework for creating rich internet applications5. It provides high-performance
application-like components such as forms, controls and widgets which enable the creation
of the graphical user interface (GUI) of the editor, [2].graphical user interface

In order to illustrate which features are needed in the behavior tree framework and in the
editor, let’s start with a example use case. We will focus on a use case that could be found
in a real game, while still keeping the example simple to clearly illustrate its points. The use
case will be used in our further discussion of the responsibilities of both the behavior tree
framework and the editor. We will define the use case in section 4.2.

3In June 2010, Unity surpassed the 200,000 developers milestone and the Unity Web Player had surpassed

30 million total installations, [4, sec. “Company - Fast Facts”]

4The plug-in works on all modern browsers including Internet Explorer, Firefox, Safari, and most Mozilla-

based browsers, [4, sec. “Features – Deployment”]

5All major web browsers are supported, including: Internet Explorer 6+, FireFox 1.5+ (PC, Mac), Safari

3+, Chrome 3+ and Opera 9+ (PC, Mac) [2]
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4.1.2 Purpose of the workbench

The behavior tree workbench is designed for a specific purpose. That purpose is to enable
us to answer whether this approach for implementing and designing game AI is a practicable
solution.

The workbench is thus created as a tool for experimenting with the problems that we are
investigating. The work in creating and using the workbench will help us in trying out the
concepts in practice. The primary experiences we want to extract from this work include:

• Implementing a game environment for testing observed agent behavior

• Implementing a behavior tree technique for handling game AI

• Creating an editor for designing behavior

• Designing a framework that enables a coupling between the game and the editor

• Integrating the game into the editor

• Experimenting with the overall workflow of the process of designing agent behavior

The behavior tree workbench is designed for the purpose of experimentation. That is, it
is merely a prototype. We do not attempt for the workbench to compete against industrial
strength editors such as Unity (section 4.3.1). We have done some considerations as how
the workbench might be improved and extending, however. Some of these ideas are listed in
section 5.2.

4.2 Game use case

A type of behavior that is used in many games is patrolling [30, p. 203]. Patrolling is the patrolling

behavior of going the rounds of a route with the purpose of guarding or scouting that area
(figure 4.4).

Figure 4.4: Patrolling around two buildings by moving between points W1, . . . ,W5 in se-

quence [30, p. 204]

The process of patrolling is typically handled by using waypoints, which are virtual waypoints
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beacons added to the game environment, [72, p. 42]. The waypoints can be used to guide
the navigation of agents. They are often enriched with information about their immediate
surroundings, allowing agents to make more intelligent decisions about their movement. A
waypoint might signal the position of a shielded area, for instance, giving the agent a place
to seek cover. In the simplest case a waypoint is nothing but a point in space. Patrolling can
be defined as the behavior causing the agent to move between the points in space specified
by a list of waypoints.

A1

A2

: agent

: waypoint

: obstacle

Legend

W1

W2 W3

W4

Talk

See 
A2

Figure 4.5: The use case environment with an agent and four waypoints

What is needed to set up a patrolling behavior for an agent in a game environment?
To be able to patrol, we need an agent and at least two waypoints (go patrol between).
Consider the environment illustrated in figure 4.5. The figure shows a top-down view of a
map representing the game objects in the example environment. We have an agent, A1, and
four waypoints, W1, . . . ,W4. For simplicity, we have divided the environment into rectangles
so we obtain a grid and restricted the agent movement to vertical, horizontal and diagonal
in the grid.

For a more precise definition of the task environment for the agent we need to define the
properties hereof (section 2.3). The task environment that we have set up is fully observable
(the entire state is visible), deterministic (only actions of the agent change the state of the
environment), sequential (the ordering of actions matter), static (the state of the environ-
ment remains unchanged while the agent decides its next action), discrete (the state of the
environment changes discretely) and single agent.

Now that we have defined the task environment, let us define the properties of the agent.
The PEAS description for agent A1 is laid out in table 4.6 on the next page. The goal of the
agent is simply to move between the waypoints in the grid. For doing so, it needs to know
its own location in the grid and needs to be able to move to an adjacent grid cell.

We can now construct a behavior tree that implements the desired behavior of the agent.
The desired behavior is the patrolling behavior which cyclically visits waypoints W1, . . . ,W4.
A behavior tree implementing this behavior is shown in figure 4.7(a) on the facing page.
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Agent Performance

Measure

Environment Actuators Sensors

A1 Patrol along way-
points

2D grid Move up, down,
left, right, diago-
nal

Location in grid

Figure 4.6: PEAS description for agent A1

"Patrol"
Sequence

Go To
[W1]

Go To
[W2]

Go To
[W3]

Go To
[W4]

(a) Behavior tree for the patrolling behavior

A1

A2

: agent

: waypoint

: obstacle

Legend

W1

W2 W3

W4

Talk

See 
A2

(b) The corresponding behavior in the environment

Figure 4.7: Two views on an example behavior

The behavior tree consists of only two types of nodes: a sequence node named Patrol

and an action node named Go To. The action is assumed to somehow move the agent to
the specified location, in this case provided by a waypoint. The action tasks have been
parameterized with a specific waypoint as argument (in square brackets). If we execute the
behavior tree with A1 as agent argument, it will result in the agent moving to waypoint W1,
then W2, then W3 and finally W4 after which the process will repeat. The movement of A1

is illustrated in figure 4.7(b) as indicated by the blue arrows. The fat arrows represent the
movement of the agent through an execution of the entire Patrol-subtree.

The illustrated behavior is what we wanted for our use case. Now we can investigate
which features are required in the editor and in the behavior tree framework of the game for
creating this behavior. We will start by looking at the game component of the workbench,
then moving on to the behavior tree framework and finally combining them with the editor
to form the entire workbench.

4.3 Game component

The game component (figure 4.8 on the following page) serves two major purposes. The
primary purpose is as the actual implementation of the game. This exposes the resources of
the game, i.e. the game models, gameplay, agent behaviors etc. (figure 4.9 on the next page).
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Figure 4.8: The game component in the behavior tree workbench

It allows the game designer to play the game to test the perceived behavior of the agents. In
our example use case (section 4.2), we could run the game to see whether the agent would
patrol between the waypoints, as was the desired behavior. That is, it is a tool for debugging
the game AI.

Figure 4.9: An example game. This scene shows waypoints, obstacles and two agents

The secondary purpose is to help making editing of agent behavior more intuitive and
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convenient. That is, integrating the game component into the editor. We need to couple the
game component with the editor by exposing the game data, representing the resources of
the game, to the editor. Without this data the editor would not know which agents, actions
etc. are available. However, the game component can also be used as a great tool for easing
the editing process because it exposes its resources visually to the game designer. One usage
hereof is to select game objects directly from within the game rather than having to rely on
a textual representation of objects in the editor.

(a) A waypoint (b) Moving the cursor over the waypoint highlights

it for selection

Figure 4.10: An example of the integration of the game into the editor. In (b) we select a

waypoint from within the running game

For instance, suppose we need to pick the argument for the waypoint parameter of the
Go To action in the editor. In many tools, we would be presented with a list of waypoints to
choose from. However, when designing the behavior, this is not actually what we want. We
would like to make the agent go to a specific place, as represented by a waypoint. In other
words, the textual description is not very helpful, but it would be to be able to visually pick
the desired waypoint from within the actual running game. Figure 4.10(a) shows a waypoint
in the game component and figure 4.10(b) shows the waypoint being selected from within
the game (the cursor is the purple sphere labeled “Waypoint”).

4.3.1 Game implementation

We have made a concrete implementation of an example game, similar to that of the example
use case (section 4.2). The reason for creating a concrete example is to be able to test the
workbench. Figure 4.11 on the next page shows the concrete game scene, which is basically
a slightly more involved version of the environment from the example use case shown in
figure 4.5 on page 86. There is no winning condition or actual gameplay in the game scene;
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it is simply a basic scene that makes it possible to test the workbench system.

Figure 4.11: The game scene as seen from above. There a two agents (robots), six waypoints

(yellow spheres) and six obstacles (red cubes).

The concrete implementation of the game has been created using Unity (figure 4.12) for
several reasons.

(a) Development of a shooter game (b) Development of a technical demonstration

Figure 4.12: Typical screens from the Unity editor environment, [4, sec. “Features –

Editor”]

First, Unity is free, well-documented and easy to use for creating fast prototype games.
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Secondly, Unity is able to deploy games directly to the web via a special browser plug-in
featuring a simple way of communicating with JavaScript code on the website in which it is
embedded (section A.2). Our goal for the game is simply to create a prototype to test the
applicability of our proposed approach to the process of designing and editing behavior. As
such, the Unity tool fully satisfies our needs. Figure 4.13 shows different views on the game
scene, i.e. the concrete game environment, inside the Unity tool.

(a) The game scene inside Unity

(b) Different perspectives on the game scene

Figure 4.13: Screens from the development of the game scene using Unity

As Unity is a fully-featured game development tool, it also has built-in support for creating
game AI. In Unity all game AI needs to be implemented by scripting (section 2.7.5) using
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a scripting language. Unitys scripting system is used to handle both game AI but also all
other game logic. Some of the key selling points about their scripting system are, [4, sec.
“Features – Scripting”]:

• Visual Properties, i.e. that variables and references within the scripts can be visually
edited directly from the Editor

• Handling Events, i.e. that scripts are able to handle both local and global events

• Cooperative Multi-Threading, i.e. that threads can “yield” (wait) without affecting
other threads

• Flexible and Easy, i.e. it is easy to manipulate game objects and change their properties
and that game objects can be referenced by e.g. name, hierarchy, tags or proximity

The developers of Unity seem to agree in that a visual indication of properties may help to
ease the design process, as we discussed in section 4.3. Although reacting to global events
may also be applicable to other game logic, it is certainly true that game AI needs to be
able to (re)act on global events. We discussed the need for this in section 3.2.9 and section
3.2.10 in which we mentioned high-level parallel assertions and prioritized lists as ways of
reacting to global events in behavior trees. Unity also acknowledges the need for concurrency,
to which end we presented a parallel node for adding concurrency to behavior trees (section
3.2.9). Finally, they state that their scripting system is “flexible and easy”. Other than
claiming that their system makes it easy to manipulate and reference game objects, they do
not elaborate on how it is flexible and easy to use.

Let us look at how to implement agent behavior using Unity as the game AI tool. Unity
allows developers to script in JavaScript, Boo or C#. Each of them has equal expressive
power, i.e. they are all Turing complete, and are equally fast, [4, “Features – Scripting”].
We have chosen to use JavaScript as the primary language for scripting. We do, however,
use a few Boo data structures, mostly dictionaries (or “hashes” in Boo terminology). We
have choosen not to use Boo as it is a relatively new language (from 2003) and neither the
language nor its documentation is sufficiently mature. We have chosen JavaScript over C#
because JavaScript is the language of choice for most Unity developers and has a less verbose
syntax than C#. The following code listing shows a behavior tree constructed in JavaScript
in Unity.

1 var pa t ro l l i ngSequence : Sequence = Sequence ( ) ;

2 pa t ro l l i ngSequence . addComponent (new GoToAction ( Vector3 ( 1 0 . 5 , 3 . 2 , 1 2 . 0 ) ) ) ;

3 pa t ro l l i ngSequence . addComponent (new GoToAction ( Vector3 (−1.5 , 3 . 2 , 1 2 . 0 ) ) ) ;

4 pa t ro l l i ngSequence . addComponent (new GoToAction ( Vector3 (−3.5 , 3 . 2 , −2.0) ) ) ;

5 pa t ro l l i ngSequence . addComponent (new GoToAction ( Vector3 ( 1 2 . 0 , 3 . 2 , 2 . 0 ) ) ) ;

6

7 agent . behaviorTree = pat ro l l i ngSequence ;

The behavior tree that we construct is equivalent to that of figure 4.7(a) from the example use
case. It consists of a sequence named patrollingSequence having four child tasks specified
by GoToAction tasks. Each GoToAction task takes as argument the destination to which the
agent should go upon execution of the task.
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The code itself is easily understandable and implementable. However, the code becomes
steadily harder to understand as the complexity of behavior trees increase. As the code
is written in a scripting language, the behavior tree may to some extend be changed at
runtime. Had Unity not relied on scripts, the game would likely had to be shut down, the
code recompiled and the game restarted in order to test the change.

The game that is deployed to the web page has several purposes. It is both the actual game
that can be played, but its purpose is also to be integrated into the editor and thereby easing
the designing and testing processes. Although these different purposes have some overlapping
functionality, they are also very different. A player has no need for being able to select agents
and waypoints while playing the game, for instance. Likewise, the game designer has no need
for a high-score system when testing the behavior. The concrete implementation of the game
is a combination of the functionality for satisfying these purposes. The main focus is on
the aspects of editing and testing as these are processes we want to investigate. Our game
component thus acts primarily as a game environment providing handles for integration into
the editor. For more discussion on this subject see section 5.2.3 on page 124.

The Unity Web Player has functionality for communicating between the Unity object
and the web page it is embedded in. We use this functionality to exchange data between the
game component, i.e. the Unity Web Player, and the editor. Section A.2 in the appendix
describes how to implement this communication.

4.4 The editor component

In this section we will discuss the responsibilities of the editor, we will discuss the purpose
of the editor, how it is supposed to work and its required features along with considerations
about additional features.

“While tasks [in behavior trees] of all kinds can contain arbitrarily
complex code, the most flexibility is provided if each task can be
broken into the smallest parts that can usefully be composed. This
is especially so because, while powerful just as a programming id-
iom, behavior trees really shine when coupled with a graphical user
interface (GUI) to edit the trees. That way, designers, technical
artists and level designers can potentially author complex AI be-
havior, [42, p. 334] ”

Compared to a scripting-based approach, such as that of Unity (section 4.3.1) for instance,
the goal is to make the design process easier, and to help the designers visualize the range of
possible behaviors and their results in the game.
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4.4.1 Features of the editor

The overall purpose of the overall workbench is to enable the designer to rapidly design, test
and tweak the behavior of agents. What functionality do we actually require from the editor
component in particular? We discussed some of the technical requirement in section 4.5.2 on
page 106, and we obviously need to take care of those. However, there is also a long list of
other features which are either requirements or which simply would be convenient to have.

We want to design the editor to be intuitive to use. A big help in achieving this comes
from our choice of using a behavior tree technique to model the behavior of the agents. In
behavior trees we have very well-defined modular tasks which we can in simple manner utilize
and we can react to whether the execution hereof fails or succeeds. The main idea is to build
up a tool in which the tasks act as self-contained building blocks (sort of like LEGO bricks)
that can be dragged and dropped to combine them into a behavior tree. Once a “building
block” has been dropped into place, it should be easy to pick it up and relocate or discard it if
testing showed that it was in a wrong place in the tree. Further, the properties of a “building
block” should be exposed and easy to modify and test for verification. The collection of
building blocks that are available should be those tasks available for the agent in question.

Before we begin discussing the concrete features of the editor, let us examine how others
have approached the task of creating a behavior tree editor. The figure below shows one
approach to designing a behavior tree editor and section A.3 on page 131 in the appendix
shows the graphical user interface of four other behavior tree editors.

Figure 4.14: User interface of the “Behavior Tree Editor” showcasing how a behavior tree

editor might look, [22]

Figure 4.14 has no actual editor functionality, but is simply an example of how a behavior
tree editor might look. The editors shown in figure A.5 and A.6 are hobby projects aimed at
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editing behavior for the “Visual 3D” game engine and Unity, respectively, [5], [1]. The editor
in figure A.3 is an editor for a special case of behavior trees the developers call “patterns”.
It has been used as an ongoing research project at the University of Alberta, [7]. Figure A.4
shows a behavior tree tool for integrating script-based behavior trees into the game engine.
This concrete tool has been used by game developer studio Big Huge Games, [27].

One recurring concept across all but one of the editors is to represent the behavior tree
using a hierarchical tree control. Using this control the tree branches downward rather than
to the sides and the leaf nodes are rightmost rather than bottommost. This representation
of a tree seems to be acceptable. One editor (figure A.6) use a more graphical approach
to represent the structure of the tree. All of the editors feature some means of providing
arguments to the parameters of the tasks. The editor in figure A.3 uses the arguments of
the tasks to form a textural description of the task. In figure A.4 the arguments are defined
within the game and are extracted using scripted code. Some of the editors (figure A.3,
A.6 and A.4) compile the behavior trees to a format which the game engine can interpret
or execute. The editor in A.5 makes it possible to run and stop execution of the behavior
directly from the editor.

Let us continue to consider which features our behavior tree editor needs. To begin with,
we have the features that make up the core of the editor and are a necessity to be able to
test the system. These features include the editor being able to receiving a list of available
tasks and their parameters, to create and move tasks, to edit the parameters of tasks and to
convert the behavior tree to an intermediate data format and send it to Unity.

Some features are needed as they provide convenient functionality and help in making
the editor easy-to-use. One such feature is to be able to explicitly start, pause and stop
the execution of the game AI. Suppose that we have tested some behavior of an agent and
found that something needed to be changed. After applying the change, we would like to
test the agent in exactly the same scenario to see whether the applied change was sufficient.
Therefore, it would be nice to be able to stop the execution and then restart it with a new
behavior tree. The ability to pause the execution of the game AI would allow the game
designer to better analyze complex behavior.

As the editor is part of a system designed to continuously test behavior, it would be con-
venient to have some way of logging debug data inside the editor. This could be information
related to a specific task, it could be warning and error messages such as errors in parsing
the behavior tree or unhandled errors within the tasks. Having an integrated debug console
would make it easier to communicate this kind of debug information. Further, a filtering
mechanism could be overlaid this console, allowing the game designer to choose which types
of debug information to display. Finally, the editor would need some functionality to load
and save behavior trees to allow the work process to continue across multiple sessions.

4.4.2 Comparing to Unity

In section 4.3.1 we looked at the main features of Unitys scripting system. Likewise, let us
look at the key selling points of the editor in Unity. A selection of these are as follows, [4,
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sec. “Features – Editor”]:

• Play, Pause, and Step, i.e. being able to pause and step through the frames of the
game to analyze complex behavior in detail

• Drag ’n Drop Everything, i.e. assets and objects can be assigned by visually dragging
the resources in the editor

• Prefabs, i.e. objects can be turned into “prefabs” that can be instantiated. Any changes
to the prefab can be propagated to all dependents

The first bullet point is concerned with testing the game. There might be a discrepancy
between the implemented generating mechanisms and the observed behavior and testing is
needed to be able to find that. This is thus used as a tool for visually debugging (potentially
complex) behavior in the editor in Unity. We also listed the ability to play, pause and stop
the execution (of the game AI) as a key feature of our editor.

Secondly, the developers of Unity have found it convenient to be able to drag and drop
different types of assets to objects and scripts. This method is used instead of having to
script everything or to choose from drop-down boxes or similar. We have also chosen to use
a visual approach in the editor, e.g. being able to select objects in the game component and
to drag and drop the tasks to form the behavior tree.

Finally, Unity relies on the concept of prefabs, or “premade fabrications”, also found in
many other game editors and 3D modeling tools. This relates, in concept, to a class hierarchy
in which we have classes that inherit functionality and properties from super types. There
are often many recurring objects in games to lower the amount of content required and to
make different object types easily identifiable. For instance, explosive barrels may be found
at many different locations throughout a level in a game. If the texture, the explosion type or
any other properties need to be changed for all the explosive barrel objects, this can simply be
changed in the super type, i.e. the prefab, and will be reflected in all objects inheriting from
it. This concept is comparable to using a look-up table for referring to subtrees. By doing
so, we can change the subtree and all references will reflect the change as well. However, this
does not enable us to use subtype polymorphism for behavior trees as prefabs do. Forsubtype polymorphism

that another approach would needed (section 5.2).

In the next section we will look at the concrete design of the editor.

4.4.3 Editor interface

The interface for the editor is shown in figure 4.15 on the next page.

The editor consists of a lot of different components, some of which were outlined in section
4.4.1. Some of the major component are collapsible and can be either a hidden or visible
mode. The user can toggle between these modes to focus on certain aspects of the editor.
Figure 4.16(a) on the facing page shows the editor will all collapsible components shown and
figure 4.16(b) shows the editor with all collapsible components hidden.

The layout of the editor consists of four overall components. First and foremost, there
is a component for constructing and manipulating a behavior tree (figure 4.17(a)). In figure
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Figure 4.15: Layout of the behavior tree editor

(a) Full layout view (b) Compact layout view

Figure 4.16: Examples of customizing the layout by collapsing/expanding components

4.17(b) is shown how the behavior tree for the patrolling behavior from figure 4.7(a) looks
in the editor. Each node represents a task, and the nodes can be dragged and dropped to
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(a) The tree component (b) Example node tree (c) Node context menu

Figure 4.17: Different aspects of the tree editor component

rearrange the tasks. If a node is right-clicked, a context menu for that node will appear.
An example hereof is shown in figure 4.17(c). The context menu makes it easy to insert
new nodes into the tree, to decorate existing nodes, to delete nodes or simply to collapse or
expand (parts of) the hierarchical structure of the tree.

(a) The property grid (b) The debug console

(c) The menu bar

Figure 4.18: Other major components of the behavior tree workbench interface

(a) Editing text (b) Editing a decimal number (c) Choosing from a list

Figure 4.19: Different ways to handle editing of parameter arguments depending on the

data type

Another key component is the property grid (figure 4.18(a)). When a node is selected in
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the tree component, its parameters will be displayed in the property grid. The parameters
are listed in name-value pairs. The value is the argument to the parameter. The arguments
to the task parameters may have various data types (section 4.5.2 on page 109). The property
grid enables the argument to be modified in a way that is suitable for that particular data
type. Figure 4.19 on the preceding page shows examples of editing three different types of
arguments; a string, a decimal number and a list.

In figure 4.18(b) we have the debug console. This component is used for logging various
data from the game component as well as from the behavior. It can be used to log information
to aid in debugging, warnings and errors to let the user know what has gone wrong. As of
now, the debug console has two different tabs for logging. One is entitled “Load Process” and
the other is entitled “Execute”. Each represent a feed of debug information relating to its
respective phase, i.e. loading a behavior tree into the behavior tree framework and executing
the behavior, respectively.

Another overall component is the menu bar (figure 4.18(c) on the facing page). This bar
provides easy access to the functions relating to nodes in the behavior tree. All the actions
of the menu bar are also accessible through the context menu in the tree component.

(a) Game behavior

tree up-to-date

(b) Game behavior tree needs to update its

parameters

(c) Game behavior tree needs to be fully

synchronized

Figure 4.20: Graphical indications on the state of the behavior tree of the game component

compared to that of the editor component

The status bar features a number of buttons. The “Play” button starts the execution
of game AI in the game component, and “Pause” pauses the execution. The “Stop” button
halts the execution and resets the behavior tree and the scene to their original states. On the
far right side of the status bar is an indication of the correspondence between the behavior
tree in the editor component and the behavior tree in the game component. The two behavior
trees are identical if the behavior tree has not been changed in the editor since it was last
synchronized with the game component. In that case, the “Up-to-date” icon is displayed
(figure 4.20(a)). If the arguments to the tasks of the behavior tree has been modified, but
the structure of the behavior tree is unchanged, then the “Refresh parameters” button is
displayed. This button will update all the parameters of the behavior tree in the game
component. If the structure of the behavior tree has been changed, the “Synchonize” button
is displayed. This button will transfer the behavior tree and construct the corresponding
object hierarchy in the game component.

The game component is integrated into the editor component, allowing a visual selection
of certain objects through the game component. There is a special control for handling
game object arguments. A task, like the Go To action, might have a parameter that needs a
waypoint object. Clicking the (waypoint) argument value in the property grid will activate
the game component and put it into focus. The user can then use the cursor object to
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(a) An agent inside the game environment (b) Using the cursor to highlight the agent for selection

Figure 4.21: Taking advantage of the integration of the game component into the editor

component to visually select an agent from inside the game

(a) An object inside the game environment (b) Using the cursor to highlight the object for selec-

tion

Figure 4.22: Selecting an object from within the game

highlight and select a waypoint object (figure 4.10 on page 89). Doing this will return focus
to the editor and set the selected object as the value in the property grid. This selection
process can work with all types of game objects in Unity. Figure 4.21 and figure 4.22 shows
how to use the same approach to select an agent or an object from within the context of the
game.
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4.5 Behavior tree framework

The game scene component (section 4.3) uses the behavior tree technique (section 2.7.6 and
chapter 3) for the game AI. We have implemented a framework, the behavior tree framework,
to handle the execution of the behavior tree. It is implemented in Unity using JavaScript
and, in addition to handling the core game AI, also features other related functionality. It
can be used to load a behavior tree from a file or string, exposing the available tasks (and
their parameters) for an agent and updating the parameters of tasks. The framework is
self-contained and game independent. It provides an interface for communicating with the
concrete game implementation and for defining new tasks. The majority of the framework
can be thought of as a black box. The framework can be considered an application of the
structural Facade pattern, [33, p. 185], [30, p. 100]. Facade pattern

In this section we will examine some of the technical aspects of the framework and how
it interfaces with the game (section 4.3) and the editor (section 4.4). In the behavior tree
framework we need three overall components; agents, behavior trees and an environment. In
the next section we will look at how we represent those components in our framework.

4.5.1 Agent architecture

We need to define some appropriate structure for general-purpose agents. In general, an agent
is “anything perceiving its environment through sensors and acting upon that environment
through actuators” (section 2.2.1), [50, p. 32]. However, we are able to narrow our definition
of an agent to agents whose agent function is determined by a behavior tree. Thus, we may
broadly consider the condition tasks (section 3.2.2) to be the sensors of the agent and the
action tasks (section 3.2.3) to be the actuators of the agent.

This being said, from a object-oriented viewpoint the agent should aggregate its sensors
and actuators directly. Tasks would then have to query sensors6 and utilize actuators7

through the agent.

Let us disregard the concrete handling of sensors and actuators and focus on creating
behavior for an agent. For this purpose, consider the following code.

1 c l a s s Agent extends MonoBehaviour {
2 var behaviorTree : Task = n u l l ; // Behavior t r e e

3

4 func t i on Update ( ) {
5 i f ( U t i l s . isRunning ( ) && behaviorTree ) {
6 behaviorTree . execute ( t h i s ) ;

7 }
8 }
9 }

6For example, getting the visual range by agent.getSensor("vision").getParameter("range");

7For example, initiating movement by agent.getActuator("movement").command("move forward");
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Here we have a class representing an agent. It has a single variable, behaviorTree, that repre-
sents the behavior tree of the agent (we assume that each agent has a single behavior tree). It
extends the MonoBehaviour class, which is Unitys superclass for all game objects implement-
ing a range of different functionality. One of the functions inherited from MonoBehaviour

is the Update function. It relies on the Template Method pattern and is invoked everyTemplate Method
pattern

frame, [33, p. 325]. In each frame, the agent then tests if the game AI system is running and
if it has a valid behavior tree (line 5), in which case it will invoke the execute function of the
behavior tree with itself as argument for the “agent” parameter (line 6). The behaviorTree

variable (line 2) will typically be instantiated to a CompositeTask, thereby creating a tree
structure (figure 4.23).

Figure 4.23: Simplified Agent class diagram illustrating its relation to its behavior tree

The execute function (line 6) will then invoke the execute function recursively through
the tree (section 3.2.4). Figure 4.24 shows an example execution sequence that could occur
in a frame.

Figure 4.24: Sequence diagram of an example execution of a behavior tree with three child

tasks

In this example, “CompositeTask” might be a selector and “Subtask 1”, “Subtask 2” and
“Subtask 3” could be three different solution to the problem that the selector tries to solve.
The agent invokes execute on its behavior tree (“CompositeTask”) which then proceeds to
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invoke execute on its first child task, which finishes its execution with a result that causes
“CompositeTask” to proceed to invoke execute on its second child task. Once the second
child task finishes it returns to “CompositeTask” at which point “CompositeTask” is satisfied
with the returned status and returns to the agent thus terminating the execute cycle for
that frame.

The framework includes a number of built-in tasks. These are tasks which do not depend
on any specific games, but can be used in all types of games. An example is composite tasks
which every behavior tree needs. Many more game independent tasks could be added to the
framework, but we have chosen the ones we needed for experimenting with the workbench
(section 4.1.2). The concrete tasks (i.e. not super types such as Task, XMLSerializableTask
etc.) available in the framework is listed below.

• Composite tasks

– Selector

– Sequence

– PrioritizedList

– Parallel

• Action tasks

– PrintAction (prints a string to the debug console)

– WaitAction (pauses the agent for a number of seconds)

• Decorator tasks

– LoopDecorator (loops the execution of the decorated task a number of times)

– CountDownTimeDecorator (requires a given amount of time between executions
of the decorated task)

These are tasks which aid in testing behavior and that we require to be able to experiment
with the workbench. Each game needs to provide all game specific tasks to be able to model
the desired agent behavior. Our concrete game implementation (section 4.3.1) adds a few
additional actions tasks and a condition task. These are required to be able to model the
desired behavior of the example use case (section 4.2). They are as follows.

• GoToAction (action that makes the agent go to a given location)

• PlayAnimation (action that plays an animation on the agent model)

• CanSeePlayer (condition that succeeds if another agent is spotted)

4.5.2 Serialization architecture

The behavior workbench consists of two overall components: the game component and the
editor component. We need some way to share data between these components. In particular
they need to be able to exchange all relevant behavior tree data. In this section, we will look
at the concept of converting behavior trees (and related information) to/from a data format
and how we use this technique to emphasize the generality of our solution.
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In figure 4.23 on page 102 we saw a class diagram for the Agent and the Task classes.
This diagram was simplified to emphasize the relationship between the agent and its behavior
tree. However, the framework also needs to handle loading of behavior trees, exposure of
parameters of tasks and to update those parameters. In order to handle this functionality,
we need to extend the definition of a task. In figure 4.25 we show an extended class diagram
in which we have included additional classes for handling said functionality.

Figure 4.25: Class diagram showing the relationships of the serialization architecture

In the diagram we have divided the classes into two conceptual groups. The group on
the left, named “Tree management”, takes care of the higher-level functions related to the
behavior trees, while the group on the right, named “Agent management”, takes care of the
more concrete responsibilities w.r.t. the tasks of the behavior tree.

Let us start by describing the lower level functionality and working our way up. Com-
pared to the Task structure in figure 4.23, we have added a new class, XMLSerializableTask,
which inherits from Task. Each Agent has a behavior tree of type XMLSerializableTask

(whose super type is Task). That is, CompositeTask forms a composite pattern with
XMLSerializableTask as interface, thus forming a tree of XMLSerializableTask objects.

This intrusive change to the agent/behavior tree relation is needed to solve one particular
problem: the serialization and deserialization of behavior trees. That is, the process ofserialization

deserialization converting an object structure to/from persistent data. In this case, we want to be able to
serialize (or deflate) the behavior tree into a data format that can be transmitted from the
game component (section 4.3) to the editor component (section 4.4) over the web (section
4.1.1). Likewise, we want to be able to deserialize (or inflate) a behavior tree, i.e. construct
a Task object structure to represent a behavior tree, based on data received from the editor
component. As the name “XMLSerializableTask” suggests, we use the XML data format for
serializing and deserializing tasks. We will go into further technical detail on page 107. For
now, however, we will focus on the overall responsibilities of the classes.

By adding XMLSerializableTask as interface for the CompositeTask we have enriched
all tasks of the behavior tree with the ability to be serialized and deserialized. Thus, the
entire tree can be recursively serialized and deserialized. These higher-level operations are the
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responsibilities of the classes in the “Tree management” group, and the BehaviorManager

class (section A.4.9 on page 142 in the appendix) provides the interface and much of the
functionality hereof. BehaviorManager is responsible for creating behavior trees from XML
data, creating XML “task templates” from different types of tasks and creating XML data
for concrete behavior trees. We have already discussed the need for being able to serialize
and deserialize behavior trees and will argue for the additional need for creating XML “task
templates” on page 106.

The BehaviorManager class has a XMLReader object that is responsible for parsing XML
data and instantiating the corresponding hierarchy of XMLNode objects. The XMLNode class is
primarily a container class, storing the data corresponding to a behavior tree task or subtree
in a convenient structure. It also has some helper functions for extracting the data in the
correct formats, e.g. being able to convert the string “2.3” to the floating point number 2.3
or the string “2.0, 0.0, 3.5” to a Unity Vector3 object describing the vector (2.0, 0.0, 3.5).

In the next section we will examine which information is actually needed for building a
behavior tree. We will continue this discussion on page 106 by looking at what data the
editor component needs in order to enable the game designer to create the desired behavior
trees. On page 107 we will define the concrete data protocols for transferring the required
data between the behavior tree framework in the game component to the editor component.
We will also look at the technical underpinnings for enabling this communication.

Data needed to construct a behavior tree

In this section we will examine what data is needed to fully construct a behavior tree.

Each agent has one behavior tree associated with it, and therefore we need to know which
agent (or agent type8) the tree in question is associated with. The agent (or agent type)
could be specified by a unique identification key. For instance, the key “soldier” could refer
to the soldier agent type and “patrolling-soldier1” could refer to an individual agent. These
identifiers could be used to retrieve the concrete behavior tree of that agent or agent type. In
our prototype we have not made this mapping as we could test the system by simply using
hardcoded agents.

In addition to a unique reference to an agent or agent type, we need a unique identifier
for each task as well as the hierarchical structure of their composition. Also, each task
may be parametrized with any number of parameters having a range of different primitive

data types or even composite data types (e.g. a list of primitive data types or a Unity primitive data types

composite data typesVector3).

As an example of what data is actually required to construct a behavior tree, let us ex-
amine the behavior tree in figure 4.7(a) on page 87 from the example use case. The behavior
tree consists of a Patrol sequence, and four Go To actions, each with a single parameter. An
example representation encapsulating all the required data is shown below:

8E.g. each agent of the type “soldier” may share the same behavior tree
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1 Behavior [ agent : A1 ( s t r i n g ) ]

2 − Sequence

3 − − GoTo [ waypoint : W1 ( s t r i n g ) ]

4 − − GoTo [ waypoint : W2 ( s t r i n g ) ]

5 − − GoTo [ waypoint : W3 ( s t r i n g ) ]

6 − − GoTo [ waypoint : W4 ( s t r i n g ) ]

Here, the dashes represent the depth of the hierarchy and the first word represents the
unique task identification (e.g. Sequence and GoTo). The square brackets represent the
list of parameters. They are listed in key-value pairs with the data format of the value in
parenthesis. The Behavior task has been added as a default root for specifying the agent
parameter without having to add specialized data fields. To sum up, the data we need to
construct a behavior tree is the following:

1. Agent: Unique agent ID

2. Task: Unique task ID and the following:

(a) Hierarchy: Depth of task hierarchy

(b) List of parameters: List of key-value pairs in which the key is the variable ID and
the value is a pair representing the actual parameter value and its data type

(c) Children: Ordered list of Tasks (2)

On page 107 we will define the data format for containing all the required data.

Exposing tasks and parameters

In this section we will examine what data is needed by the editor to design the desired
behavior tree. In other words, what data needs to be sent from the behavior tree framework
(through the game component) to the editor, in order for the editor to know all it needs to
know.

First, what does the editor need to know? The purpose of the editor is to design behavior
trees which can be constructed by the behavior tree framework. On page 105 we saw what
data was needed to construct a behavior tree. Therefore, the editor needs to know at least
enough to complete the data requirements outlined on page 105. Suppose that you are a
game designer who, using the behavior tree workbench, needs to create the behavior tree
in 4.7(a) on page 87 from the example use case. You would need for the editor to know that
there are two different types of tasks: Sequence and Go To. Furthermore the editor will need
to know that the Go To task has a parameter, whose key is “waypoint” and whose value is
of type string9.

The agent may also have tasks at its disposal other than Sequence and Go To. It may
have a Smoke A Cigarette or Idle task that it is able to perform. Not all tasks are available
for all agents however. You may not want an agent guarding a highly flammable gas tank
to have access to the Smoke a Cigarette task, for instance. Likewise, a guard tower would

9If the editor did not know the data type of the parameter it could not verify the correctness hereof.
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not have a Go To task even though it may be available to another agent in the environment.
Therefore, we need to associate a collection of available tasks with each agent (or agent type),
and the editor needs to be able to extract this data from the behavior tree framework.

Additionally, the parameters of a task may be a list of possibilities (e.g. the chosen
waypoint should be either W1, W2, W3 or W4) or it may be a composite data type (e.g. a
Unity Vector3). In the case of the list we need to know the elements the list holds, and in
the case of the composite data type we need to define some syntax to encode the structure
(page 107). For assisting the game designer, we will require that each parameter has a default
value. This also enables the game designer to reset the parameter values.

Finally, we need to know which agents or agent types are present in the environment.
To sum up, the editor needs to know which agents are in the environment, which tasks they
have available to them and the name and value(s) of their parameters. The key elements
that need to be exposed from the environment are the following.

1. List of agents: List of unique agent ID

2. For each agent a collection of available tasks, each task containing the following:

(a) Task: Unique Task ID

(b) List of parameters: List of key-value pairs in which the key is the variable ID and
the value is a pair representing the actual parameter value, its data type and a
default value

In the next section we will define the concrete protocols we have chosen for transferring
data from the game component to the editor component and vise versa.

Data passing protocols

In the two previous sections we determined what data needed to be exchanged between the
game component and the editor component. In this section we will specify the protocols for
communicating that data.

We have chosen the Extensible Markup Language10 (XML) as the format to serialize Extensible Markup
Language

to and deserialize from. XML is a textural data format that allows for storing arbitrary data.
The primary reasons for choosing is that XML is simple, wide-spread, cross-platform, human
readable and has focus on generality and usability over the internet, [9]. In this section we
will define the actual data passing protocols and will also look at some examples of serialized
behavior trees.

First, let us clarify the actual data flow between the components of the behavior tree
workbench (figure 4.26 on the following page). If we assume the point-of-view of the editor,
we need to get information from the game environment (page 106), e.g. which agents are
available and which tasks they have. This data is queried through the game component.
The behavior tree framework is responsible for serializing this data into a format that can
be transfered to the editor. We do this by converting the tasks into “task templates” (figure

10See http://www.w3.org/TR/REC-xml for specification

http://www.w3.org/TR/REC-xml
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Figure 4.26: Data flow in the behavior tree workbench

4.26, left) and sending them to the editor component. The editor then deserializes the “task
templates” into node templates. The node templates are used to instantiate new nodes which
the user (e.g. the game designer) creates and edits to form the behavior tree (figure 4.26,
right).

When the user wants to test the behavior, the nodes are serialized into XML data corre-
sponding to the behavior tree the nodes represent. This data is then transfered to the game
component which parses the data and constructs the corresponding behavior tree (page 105).
The user can then observe, and experiment with, the in-game behavior that was designed in
the editor.

The following section defines the data format for passing the data between the Unity Web
Player and the editor component.

Behavior tree data — On page 105 we described the data needed to represent a behavior
tree in our framework. The basic format for a task is shown below.

1 < [TASK ID ] [PARAMETER LIST ]>

2 < !−− ch i l d ta sk s −−>
3 </ [TASK ID ]>

[TASK ID] is the unique task identification key representing a type of task. If the task
defined by [TASK ID] is parameterized then [PARAMETER LIST] is the list of arguments for
the parameters of the task. For instance, a Sequence node without any child tasks will
be represented by <sequence/>. The Go To node has a single string parameter and would
be represented by e.g. <gotoaction waypoint="W2"/>. Thus, the XML data needed to
represent the behavior tree from figure 4.7(a) on page 87 from the example use case would
be the following:

1 <behavior agent=” robot ”>

2 <sequence>

3 <gotoac t i on waypoint=”W1”/>

4 <gotoac t i on waypoint=”W2”/>

5 <gotoac t i on waypoint=”W3”/>

6 <gotoac t i on waypoint=”W4”/>
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7 </ sequence>

8 </ behavior>

Task templates — On page 106 we specified that the editor needs a list of the available
agents in the game scene. However, as the agents are visually available through the game
component, we do not need to send this list explicitly. Instead we will allow the user to select
an agent through the game component. Once an agent has been selected, we send the list
of available tasks for that particular agent or agent type11. Thus, we need to send a list of
all the “task templates” to be able to instantiate the tasks which are available for the given
agent. The basic format for a task template is shown below.

1 <task codename=” (STRING) ” name=” (STRING) ” type=” (STRING) ” d e s c r i p t i o n=” (STRING

) ”>

2 <parameter name=” (STRING) ” value−type=” s t r i n g ” d e f a u l t=” (STRING) ” />

3 <parameter name=” (STRING) ” value−type=” i n t ” d e f a u l t=” (INTEGER) ” min=” (

INTEGER) ” max=” (INTEGER) ” />

4 <parameter name=” (STRING) ” value−type=” f l o a t ” d e f a u l t=” (FLOAT) ” min=” (FLOAT)

” max=” (FLOAT) ” />

5 <parameter name=” (STRING) ” value−type=” l i s t ” d e f a u l t=” (STRING) ” va lue s=” (

STRING LIST) ” />

6 < !−− more parameter tags . . . −−>
7 </ task>

A task is defined by a codename, a more descriptive, human readable, name a node type,
a node description and optionally a list of parameters and their properties. A Sequence

node that has no parameters will have a task template that looks like the following.

1 <task codename=” sequence ” name=” Sequence ” type=” composite ” d e s c r i p t i o n=”

Executes c h i l d ta sk s in sequence ”/>

All parameters have a name a value-type and a default value. Different value types (i.e.
data types) may have additional properties, as shown in the list of example parameters. For
instance, the Go To task has a single parameter that is a list of possible choices. It thus needs
to have a values field to hold the list of available choices. The task template for the Go To

node will look like the following.

1 <task codename=” gotoac t i on ” name=”Go To” type=” ac t i on ” d e s c r i p t i o n=”Makes the

agent go to the g iven waypoint”>

2 <parameter name=”waypoint” value−type=” l i s t ” d e f a u l t=”W1” va lues=”W1|W2|W3|
W4” />

3 </ task>

The task templates for agent A1 in the example use case would consist of the task templates
for Sequence and Go To, but also all other tasks available to it. It might have access to the

11The functionality for doing this is implemented in both the game component and the editor component.

However, this feature is not important w.r.t. our purpose for the workbench (section 4.1.2) and we have thus

simply used a static list of tasks
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Selector and Parallel composite tasks, a Say action and a Can See Agent? condition.
The complete task template data for this example could be the following (leaving out the
description fields for brevity).

1 <ta sk s agent=” robot ”>

2 <task codename=” sequence ” name=” Sequence ” type=” composite ”/>

3 <task codename=” s e l e c t o r ” name=” S e l e c t o r ” type=” composite ”/>

4 <task codename=” p a r a l l e l ” name=” P a r a l l e l ” type=” composite ”/>

5 <task codename=” gotoac t i on ” name=”Go To” type=” ac t i on ”>

6 <parameter name=”waypoint” value−type=” l i s t ” d e f a u l t=”W1” va lues=”W1|W2|W3

|W4” />

7 </ task>

8 <task codename=” sayac t i on ” name=”Say” type=” ac t i on ”>

9 <parameter name=” text ” value−type=” s t r i n g ” d e f a u l t=” He l lo ! ” />

10 </ task>

11 <task codename=” canseeagent ” name=”Can See Agent” type=” cond i t i on ”>

12 <parameter name=” agent type ” value−type=” s t r i n g ” d e f a u l t=” robot ” />

13 </ task>

14 </ ta sk s>

The editor can load a behavior tree for an agent given the behavior tree and the task
templates for that agent. The behavior tree data holds the actual behavior tasks, parameter
arguments and hierarchical structure while the task templates provide the additional task
information that the editor needs.

The implementation of the serialization/deserialization architecture is detailed in sec-
tion A.1 on page 125 in the appendix. In it we describe how we have integrated the
serialization and deserialization functionality into the behavior tree structure through the
XMLSerializableTask class. We also introduce the BehaviorManager class to provide the
overall interface for loading behavior trees from XML data and to register agents and tasks
to be able to create task template data for agents.

4.5.3 The binding problem

One issue that needs to be considered when creating game AI is how to “bind” the represen-
tation of behavior to the representation of the environment:

“In order to actually build AI for a game, we’ll need a whole set
of additional infrastructure. [...] the AI needs information from
the game to make sensible decisions. This is sometimes called
“perception” (especially in academic AI): working out what in-
formation the character knows. In practice, it is much broader
than just simulating what each character can see or hear, but in-
cludes all interfaces between the game world and the AI, [42, p.
11] ”
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In designing behavior for game AI, it is the game designer who needs information from
the game to determine how the agent should act. To use the example mentioned in section
2.1.1, if the goal of an agent is to flee from a monster, then the agent needs at least a way of
sensing the monster and an actuator to move itself away from the monster.

Designing the desired behavior is the responsibility of the game designer but some sensors
and actuators need to be available for doing so. The implementation of these is the respon-
sibility of the game AI programmer. Thus, there need to be an interplay between the game
AI programmer and the game designer to allow the designer to create the desired behavior.
The game AI programmers need to define the vocabulary of the game which, in turn, the
game designers will use to create behavior:

“The interface between the script and game engines facilitates the
binding between vocabulary [of actions and conditions available]
and the game world, [32, p. 288] ”

Furthermore, as mentioned in section 3.2, tasks may be defined at various degrees of
abstraction. A task may, for instance, consist of applying current to a motor in order to
trigger movement, taking a single step, taking multiple steps or navigating to another location
altogether. Choosing a low level of abstraction can make it laborious to design the desired
behavior and choosing a high level of abstraction can make it impossible to create specialized
behavior.

There is a number of unanswered questions with regard to the binding between the game
environment and the game AI technique for an agent. Some of these questions are as follows.

• How do agents perceive the world?

• How do agents perform actions in the world?

• Which sensors do the game designers need for obtaining the required information?

• Which actuators do the game designers need for creating the desired observed behavior?

• What level of abstraction should the available tasks have?

The answers to these questions depend entirely on the specific game environment and agent
type:

“But what is the correct symbolic description of the world around
the intelligence system? Surely that description must be task de-
pendent, [12, p. 2] ”

Overall, there is no right or wrong way of answering these questions, it depends on the
game and its agents. However, for a specific game, the choices do have a big impact on the
whole process of creating game AI. Poor choices may, in fact, make it impossible to create the
desired behavior so care must be taken to choose a sound approach for creating the interface
between the game environment and the agent.
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4.6 Extending the use case

We have already looked at a simple use case in section 4.2 and used that as an example
throughout the chapter. In this section we will outline a new use case in which we build on
top of the previous use case but increases the complexity of the game environment and the
desired behavior. We will then discuss how a game designer would go about designing the
required behavior using the behavior tree workbench.

The task environment of the previous use case is fully observable, deterministic, sequential,
static, discrete and single agent. We will now modify the task environment of the game to be
partially observable (not all state of the environment is available) rather than fully observable,
multiagent (multiple agents whose performance measure depend on other agents) rather than
single agent and strategic (only the other agents affect the state of the environment) rather
than deterministic.

A1 A2

: agent

: waypoint

: obstacle

Legend

W1

W2 W3

W4

Talk

See 
A2

Figure 4.27: The extended game environment with agent A2 and four (red) obstacles added

The game environment is illustrated in figure 4.27 as seen from above. Compared to
the previous use case, we have added another agent, A2, to the environment and made a
successful interaction between A1 and A2 part of their performance measures (i.e. they are
cooperative agents). Furthermore, we have given the agents a vision sensor providing a view-
cone in the direction the agent is heading. Four obstacles (the red stop signs) have also been
added to the environment and these block the agents line-of-sight.

We will continue to focus on the behavior of A1. It will still be the goal of the agent to
patrol along W1, . . . ,W4. However, now we also want to look out for agent A2 and – if we
spot it – move to it and initiate a short conversation before proceeding with the patrolling
behavior. The PEAS description (section 2.3.2) of A1 and A2 is shown in table 4.28 on the
facing page.

To design this behavior, we could start with the patrolling behavior tree from figure 4.7(a)
on page 87. Here we have a Sequence encapsulating the patrolling behavior. It has four Go

To actions as child tasks, each representing the action to moving to the next waypoint.
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Agent Performance

Measure

Environment Actuators Sensors

A1 Patrol along way-
points, converse
with A2

2D grid Move up, down,
left, right, diago-
nal & talk

Location in grid,
vision

A2 Converse with A1 2D grid Talk Vision

Figure 4.28: PEAS description for agent A1 and A2

To get the desired behavior we need to add a condition task to query the vision sensor
and test whether we can see A2. We will call this condition task Agent Spotted?. However,
we cannot simply add it to the Sequence. Suppose we add Agent Spotted? as the first child
task and in between each Go To task. We will get a lot of redundant tasks, and we will only
execute Agent Spotted? after we arrive at each waypoint.

What we want is to continuously execute Agent Spotted? as we patrol, such that
once the condition succeeds we can instantly react on it. For this purpose we will use a
Prioritized List12. We want our highest priority child task to be the subtree that goes
and converses with A2 and the patrolling behavior as the lower priority child task. This way,
the conversing behavior can take precedence over the patrolling behavior once the Agent

Spotted? condition succeeds thus triggering the assertion. The resulting behavior tree is
shown in figure 4.29(a). Note that the Patrol task refers to the patrolling sequence of figure
4.7(a).

Agent Spotted?

"Talk or Patrol"
Prioritized List

"Converse With Agent"
Sequence

Patrol

Go To Agent Talk To Agent

(a) Behavior tree for patrolling and conversing with

A2

A1 A2

: agent

: waypoint

: obstacle

Legend

W1

W2 W3

W4
Talk

See 
A2

See 
A2

(b) Observed behavior of A1

Figure 4.29: The generating mechanism (a) and observed behavior (b) of the extended use

case

12We could also have used a Parallel task but a Prioritized List is a more pragmatic choice for this

purpose (section 3.2.10)
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Now let us test to see if the behavior we have designed actually corresponds to the desired
observed behavior. Figure 4.29(b) on the previous page illustrates the observed behavior
generated by the behavior tree in 4.29(a). Agent A1 moves to W1, W2, W3 and on the way
to W4 it spots A2 (“See A2”, mid), moves to the agent and initiates a conversation. This
behavior was exactly what we wanted. However, once the conversation has ended (Talk To

Agent terminates), agent A1 does not proceed to W4 but instead initiates a new conversation
with A2. The reason is that the next frame of game AI processing will again execute the Talk
or Patrol prioritized list which will try to execute its highest-priority child, the Converse

With Agent sequence and the Agent Spotted? assertion will trigger again (“See A2”, top).

We need some way of keeping A1 from performing the Converse With Agent sequence
if it has executed it within a short amount of time. However, in this context, we are only
interested in avoiding execution of the subtree if it actually succeeded. If Agent Spotted?

failed, for instance, then we do not need to postpone the next execution of the Converse

With Agent sequence. We will therefore define a new decorator type named Countdown on

success which simply test the returned status of its decorated task, and if it succeeded
then the decorator will return fail on execution until a given time has passed. This updated
behavior tree is shown in figure 4.30(a).

Agent Spotted?

 Countdown 
on success:

30 sec.

"Converse With Agent"
Sequence

"Talk or Patrol"
Prioritized List

Patrol

Go To Agent Talk To Agent

(a) Updated behavior tree to avoid continuously re-

peating the Converse With Agent sequence

A1 A2

: agent

: waypoint

: obstacle

Legend

W1

W2 W3

W4

Talk

See 
A2

(b) The corresponding, observed, behavior

Figure 4.30: Updated behavior tree (a) resulting in the desired observed behavior (b)

Figure 4.30(b) shows the observed behavior in testing the updated behavior tree. This
time, after Converse With Agent has terminated, the Countdown on success decorator
ensures that the Converse With Agent subtree cannot be executed until 30 seconds has
passed. The desired behavior is thus achieved after a few iterations of design and testing the
observed behavior.
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4.7 In conclusion

In this chapter we have described the work of designing the behavior tree workbench and each
of its individual components. We have created a game environment that allows us to test
the observed behavior of agents. On top of this we implemented a framework for handling
game AI using a behavior tree technique. We have created an editor for designing and testing
behavior trees. The game component has been integrated into the editor through the behavior
tree framework. Finally, we have discussed how the workflow of designing agent behavior
breaks into incremental iterations of designing and testing. The behavior tree workbench
and the concrete example scene can be found as described in section 1.5.

The work with the behavior tree workbench has enabled us to do practical experiments in
many different areas. We believe that this approach for creating behavior is suitable for both
the game AI programmer and the game designer. The processes of designing and testing
behavior becomes much more interlaced, resulting in a workflow that is more intuitive. We
have had a few people test our tool and they agree with this observation. Although the tool
is simply a prototype the feedback from testers has been positive. The testers ranged from
novice and intermediate in game development experience and all found the prototype to have
the potential of being a useful tool for designing and testing behavior.

Before attempting to extend the tool to be applicable in commercial game development,
an extensive investigation into the specific needs of the game developers would have to be
undertaken. Also, more rigorous and structured tests would have to be carried out of verify
the usefulness of the tool in different contexts.
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Chapter 5
Conclusion

In this thesis we have examined the problem that we described in chapter 1. We listed some
specific issues in section 1.3 which we had chosen to investigate based on the description of
the problem. In the next section, we will synthesize and conclude on each of those issues. In
section 5.2 we present considerations for how to extend and improve the tool prototype that
we have created for designing behavior.

5.1 Conclusion

This thesis has been concerned with the problem of game designers lacking good tools for
creating behavior of NPCs thereby resulting in a troublesome design process. We have
implemented a prototype of a tool for making this process easier, both for the game designers
and the game AI programmers.

5.1.1 Survey of game AI techniques

We wanted to investigate which properties the game AI platform required for handling the
decision making process in a modern game. To this end we made a survey of the most popular
and commonly used techniques in the game industry. The survey showed that many of the
techniques still in use today, such as finite state machines and rule-based systems, have much
in common with some of the first approaches to handling game AI. Finite state machines, in
particular, are still a popular technique even though its first applications in games was more
than 30 years ago. It was, for instance, used for the behavior of the ghosts in Pac-Man, a
game which was released in 1980.

However, these techniques started to show shortcomings as the game industry matured
and games became more complex. The old techniques were extended in numerous ways as
work-arounds for overcoming these issues. The extensions focused, among other things, on
coping with the increased magnitude and complexity of behaviors, on using parallel behaviors
and on combining sequential and reactive behaviors. One of these extensions, named hierar-
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chical finite state machines, allowed the behavior of finite state machines to be structured as
a hierarchy of behaviors. This was especially convenient for the game designers, as behavior
could be considered at different levels of abstraction. Finite state machines already had the
desired property of being reactive but this extension also made the technique intuitive.

Another technique that has only recently gained acceptance in the game industry is the
use of planners. It has traits that are especially desirable in creating rational agents, namely
that the technique creates autonomous and purposeful behavior by construction. Planners
have been criticized for being difficult for game AI programmers to integrate into games and
hard to game designers to use for creating the desired behavior.

The technique of scripting, on the other hand, is highly flexible as it provides full access
to the functionality of game AI platform thereby enabling the game designers to model
any behavior. Additionally, scripting is a data-driven approach, a trait which has become
indispensable for game AI. However, scripts are not intuitive and are difficult to introspect.
In spite of this, scripting has become a very widespread technique in the game industry.

Our focus has been on handling the decision making process for character-based game
AI. For this purpose, we have chosen to use a novel technique called behavior trees. Since its
emergence, the behavior tree technique has become increasingly popular in the game industry.
One reason for this popularity is that the technique is a synthesis of some of the most popular
game AI techniques today, namely hierarchical finite state machines, planners and scripting.
Behavior trees compose modular behavior into a hierarchical structure, making it intuitive for
both game AI programmers and game designers. It relies on reactive planning and provides
autonomy by supporting fall-back solutions. Behavior trees combine the desirable properties
of many other popular techniques such as being intuitive, reactive, autonomous, purposeful
and flexible.

Behavior trees are well suited for game AI programmers as they are conceptually simple
to grasp, very simple to implement and use modular behaviors.

5.1.2 Design of a tool for game designers

Creating the desired behavior of a game agent is an iterative process. The game AI pro-
grammers provide the game AI platform on top of which the game designer will design the
behavior using a tool. The tool expresses the functionality of the game AI platform in a
way that is more suitable for game designers. Creating the desired agent behavior consists
of iterations of design and test phases. The game designer uses the tool to design behavior,
then tests the behavior to verify that the perceived behavior in the game is as expected.

We investigated how to design an intuitive tool for aiding the game designer in creating
the desired behavior. The design process should be intuitive and it should be possible to
visualize the range of possible behaviors. Additionally, it should be easy to introspect the
designed behavior. We have chosen to use the hierarchical structure of behavior trees as a
central element in the tool. The representation of the behavior is nearly identical for the
game designer and game AI programmer, which helps to establish a shared vocabulary for
discussing behavior. This is important as the process of designing behavior is an interplay
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between the game AI programmer and the game designer. Additionally, the hierarchical
structure allows the game designer to focus on certain layers of abstraction. The structure
can be manipulated directly by simply dragging and dropping behaviors.

Our behavior design tool provides a list of the available behavior, allowing the game
designer to pick behaviors to satisfy a given task. Each behavior can be customized by ma-
nipulating its parameters. Also, the same behavior may be tweaked to apply in multiple
situations. The game designer needs a convenient way to select the arguments to the param-
eters of behaviors. We have chosen to implement a game system that can be integrated into
the behavior design tool. We hereby enable the game designer to visually select arguments
such as agents, waypoints and objects directly from the game. This makes the design process
more intuitive and is less error-prone and ensures a better correlation between the designed
behavior and the perceived behavior. In addition, the integration allows the game designer to
test the designed behavior immediately without having to leave the behavior design tool. The
overall workflow becomes more fluid, leading to shorter design iterations, more productive
game designers and ultimately a better behavior in a shorter amount of time.

5.1.3 Behavior tree framework

We have designed and implemented a framework for bridging the game AI platform and the
behavior design tool. The primary purpose of the framework is to facilitate the communica-
tion between the two systems. This involves transferring data between the game AI platform
and the behavior design tool. The framework makes it easy to convert behavior trees to XML
and to create behavior trees from recieved XML data.

The framework also makes it more convenient for game AI programmers to implement
behaviors and use the behavior tree technique in conjunction with the design behavior tool
to handle the game AI.

5.1.4 Implementing the tool

Our focus has been on implementing the features that will enable us to examine the practica-
bility of our approach to implementing and designing game AI. For our purpose, the creation
of the tool serves primarily as means of experimenting with the investigated concepts in
practice.

We have implemented a concrete game environment, a behavior design editor and a
framework for handling the communication between them. We have chosen to make the
tool web-based to make it more accessible and to avoid the need for software distribution,
installation and updating.

The game environment and the framework for handling the game AI using the behavior
tree technique are created using the Unity game development tool. The framework is im-
plemented using Unity’s JavaScript implementation and relies on classical software design
patterns for achieving a composite and robust architecture. Implementation of the frame-
work has also focused on making it convenient for the game AI programmer to create new
behaviors and expose them to the editor.
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We have also built a concrete example game scene using Unity. The scene reflects the
need for some of the behaviors often found in games, i.e. patrolling along waypoints. This
scene served as a testbed for experimenting with the integration of the game into the editing
and testing process. The framework facilitates the integration of the game component into
the editor component and can be treated as a black box.

The editor for designing behavior is implemented using a JavaScript library for creating
rich web applications called Ext JS. It relies on standard controls such as buttons, toolbars
and menus which are familiar to most people. The editor uses a tree control to model the
design of behavior trees and supports drag and drop of tree nodes for easy manipulation of
the tree.

The purpose of the tool we have designed and implemented is to experiment with the
proposed approach to designing behavior. We believe that we have accomplished this goal
by showing how to create a system for making a convenient workflow for both the game AI
programmer and the game designer. We have had a few people test the tool and gotten
positive feedback. Detailed user tests would have to be carried out to more rigorously test
the applicability. The tool we have created is a prototype for a specific purpose, and its
functionality does not have the breadth or depth that would be required in the development of
commercial games. The approach we have investigated seems practicable and we expect that,
if given enough time, the tool could be made useful for a wide variety of game development
efforts. Some ideas and considerations on how the tool could be improved and extending are
listed in the next section.

5.2 Future work

In this thesis we started out examining game development in general and game AI devel-
opment in particular. Even game AI is an enormously broad field spanning many different
disciplines. As we went along, we narrowed the scope further. We finally settled on a num-
ber of issues we wanted to shed light on. The prototype was implemented with the features
required for enabling us to test our approach to handling these issues. In this section we will
list some of the features and extension we would have liked to have investigated further and
implemented, had we had more time. Many of the listed features would be required if the
prototype was to be extended for use in developing commercial games.

5.2.1 Behavior trees

• Blackboards

In section 2.7.2 we discussed blackboards as a way for handling communication between
multiple agents. The same technique may be used to handle data for the behaviors of
a single agent. It can be used as a memory model of the agent for model-based agents
(section 2.4). That is, it can store information about objects in the world, e.g. where
an object was last seen. This can help to form a more realistic AI because the AI’s
view on the world can diverge from reality. This also alleviates some of the storage
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problems concerned with behavior trees. Another usage is to integrate blackboards
into the behavior tree structure, thereby forming a hierarchy of blackboards, [42, sec.
5.4.5]. This can then be used to contain data for tasks across multiple executions or as
a way for tasks to pass data between them.

Let us look at an example in which a hierarchy of blackboards could have been used.
In figure 4.30 on page 114 the behavior of agent A1 is hardcoded to interact with agent
A2. Instead, we can use a blackboard to record which agent is spotted by A1 in the
Agent Spotted? condition, and then read this value back in the Go To Agent and
Talk To Agent actions.

To do that, we could include two parameters in the Agent Spotted? condition: “Write
agent to blackboard” (a boolean value) and “Agent blackboard variable” (a string
value). You could give the arguments true and "spottedAgent". The Go To Agent

and Talk To Agent actions could then have the parameter “Agent blackboard variable”
which would be set to "spottedAgent". The Agent Spotted? condition would then
write the unique identification key of the spotted agent (if any) into the variable in the
blackboard for the other tasks to read. A Fresh Blackboard decorator could be used
to create a new clean blackboard to ensure that no variables are overwritten or left as
garbage [42, p. 364-365].

• Level-of-detail

The idea of using a level-of-detail technique (section 2.6.3) is to simplify computations
by making approximations when the player will not notice the difference, [32, p. 294].
There is no built-in support in behavior trees for handling this. One approach to
integrate a level-of-detail technique in behavior trees would be through decorator tasks,
e.g. a Distance LOD decorator. For instance, the Distance LOD decorator task could
flag the desired level-of-detail (e.g. on a blackboard) based on distance and its decorated
task could act accordingly.

• Memory optimization

The memory footprint of behavior could be greatly reduced by using a look-up table
of behavior trees (section 3.3 and 3.4) rather than instantiating one or more behavior
trees per agent. This is a clear-cut approach for handling the behavior of a group of
agents having the same behavior. However, this approach is not as obvious if agents
generally have customized behavior. An approach similar to that of polymorphic FSMs
(section 2.7.2) may be used to allow custom behavior to be used in conjunction with
looked-up behavior.

Additionally, there are problems concerning the persistent state of tasks, e.g. decorators
which depend on some data and parallel processes which need to keep a list of active
tasks. One solution is to flag these tasks to always be stored in the tree. Another is to
have them store their data at each agent, e.g. on a blackboard (section 2.7.2).

• Polymorphism
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There are no natural way for a behavior tree to inherit the tasks and arguments of
another behavior tree. This is relevant in many situations, e.g. for adding character-
to-character variety. Consider a game having two different types of agents: a “Melee
soldier” and a “Ranged soldier”. The only difference would be that the “Melee soldier”
has a close-range aggressive combat style while the “Ranged soldier” has a long-ranged
defensive combat style. It would be convenient to be able to define an overall “Soldier”
behavior that both types of agents could inherit from and customize.

One approach could be to inject custom behavior into the “Soldier” tree depending
on which agent type instantiated it. This approach is similar to that of polymorphic
FSMs (section 2.7.2). However, there is still no obvious elegant way of customizing
the parameters of the tasks of the “Soldier” tree. One solution for this is to read all
arguments to parameters from a “character” file, instead of embedding them into the
tree. This approach can also be used to fall back to the “character” file of the parent
(i.e. the super type) if the parameter is not found in the “character” file itself. Thereby
a hierarchy of character types is created, [37].

• Integrate scripting

The concept of scripting could be integrated in behavior trees by a special Scripted
Behavior task. That task could e.g. take as argument a regular script such as a Lua
script (section 2.7.5). It could also take as argument intermediate data representing a
behavior tree. This data could then be expanded into the tree at runtime. Further,
such a task may be triggered by some condition in the game, a concept called stimulus

behavior, [37]. This makes it easy to enable custom (i.e. scripted) behavior understimulus behavior

certain circumstances.

• Non-deterministic tasks

In section 2.7.2 we discussed non-deterministic FSMs. It is also possible to introduce
randomness into the composite tasks of behavior trees. This can be done simply by
shuffling the list of child tasks before executing any children. This can help to increase
replayability by reducing the predictability.

• Behavior impulses

Types of behavior may occur in which it is required to bypass the regular search
paradigm and jump to a task somewhere in the tree. An approach for doing this
is called a behavior impulse and is a task that redirects the execution to another be-behavior impulse

havior in the tree, [37]. It can e.g. be used for situation-based activation of otherwise
lower-priority behaviors.

• Interruptibility and resumability

In some situations, when a task is being prematurely terminated as another task gets
precedence, we would like to resume the interrupted task once we are done with the
other task. For instance, suppose agent A is going to talk to agent B on the other side
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of the room, but is interrupted by agent C for some reason. Once agent C is done with
agent A, we would like for agent A to continue to go to talk to agent B. Likewise, we
would like two agents having a conversation to continue with that conversation after
they have been interrupted. A solution for this using a queueing system is proposed in
[29].

5.2.2 Editor

• User-created look-up tasks

As described in section 3.4, there are many instances in which it would be convenient
to represent tasks by using a look-up table rather than instantiating objects. This
also allows the game designer to create subtrees that can be used in several different
places in a behavior tree or even in different behavior trees. For instance, consider
the behavior of figure 4.7(a) on page 87 composed of a Patrol sequence with four Go

To actions as children. This behavior could be made into a single task that could be
referenced through a table look-up. It would then be very applicable to have a built-in
subtree editor. Even more so to have it working in concert with the regular behavior
tree editor. In that way, a look-up subtree might be created by simply dragging the
subtree from the regular behavior tree editor to the subtree editor.

This concept could be extended to allow the game designers to create a library of custom
trees. These trees could be referenced by different behavior trees, and changes in the
custom trees would be reflected in each behavior tree. It might also be convenient for
the nodes representing custom trees to have all the collective parameters of its children,
such that entire high-level behaviors could be easily configured for specific requirements.

• Run-time highlighting of active tasks

To aid the game designer additionally in the testing process it could be convenient to
emphasize the correlation between the generating mechanism and the observed behav-
ior. One way of doing so would be to highlight the task(s) active in the game component
in the editor. This would give the game designer a better intuition about the result of
the generating mechanism and allow more easily to isolate faulty behavior. Completed
tasks could in addition be flagged with their terminating status such that the game
designer is able to follow the execution flow.

As some tasks terminate instantly or within very few frame, it could be convenient to
be able to step through the execution. Alternatively, a way of controlling the execution
speed could be added.

• Breakpoint system

For the purpose of debugging it could be convenient to have a way of inserting break-
points into the behavior. This could be implemented simply as a built-in task those
behavior is to halt execution and return to the editor. Ideally it should be possible to
inspect the state of the agent, the behaviors and, for instance, the blackboard at the
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instant the breakpoint triggered. An easy way of handling this, would be to dump the
relevant data to the debug console.

• Manipulating multiple nodes

As of now, there is no way of selecting multiple nodes. Having this functionality would
help in moving or deleting several nodes at the same time. Also, this may allow for
editing the arguments of several nodes simultaneously.

5.2.3 Miscellaneous

• Data validation

Both the game component and the editor component of the behavior tree workbench
are designed to be replaceable. It would thus be important to have a robust mechanism
for validating the data received by either component. One such mechanism could be
to validate against a XML schema. The schema would then be used to verify the
correctness of the syntax of the received data. If the validation fails, the data should
be rejected.

• Game modes

Our implementation of game component operates as a combination of both a game and
an integrated editing and testing tool. In a concrete development scenario, the game
would require three explicit modes: play, edit and test.

The play mode would simply be the game. This mode would have all the things required
by the game such as user interface, high score, story, gameplay etc..

The edit mode would be the mode in which it was possible to interact with the resources
of the game, primarily with the purpose of visually selecting objects from within the
game as part of the design process. This mode would be a static representation of a
particular level in the game and the agents and objects in that level.

The testing mode would be similar to the play mode, but focusing on debugging behav-
ior. Thus, there would be no need for user interfaces or high scores, but maybe some
other mechanisms suitable for testing. This could e.g. be to draw lines symbolizing
where the agent is going, having icons to symbolize the current state of the agent etc..

• Using the editor with other systems

As mentioned, both the game component and the editor component have been made to
be replaceable. We have not yet experimented with replacing either component. How-
ever, it would be possible to replace the game component with a completely different
system, for instance a LEGO Mindstorms robot. Depending on the context, it might be
convenient to keep a simulated environment for editing the behavior, while the testing
could by trying the behavior in the real world. For this to work, the robot would need
to be able to receive behavior tree XML data and use this to create behavior. Such a
system might find usage in teaching robot systems.
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A.1 Implementation of the serialization architecture

The implementation of the serialization is mainly located in the XMLSerializableTask class,
and the implementation of deserialization in located in the BehaviorManager, XMLReader and
XMLNode classes.

The interface for XMLSerializableTask has been extended from Task to include the
functionality required to be able to serialize tasks as well as parsing and reading parameters.
Disregarding some helper functions, the interface looks as follows:

1 c l a s s XMLSerial izableTask extends Task {
2 func t i on XMLSerial izableTask ( codeName : Str ing , name : Str ing , type : S t r ing ) ;

3

4 func t i on getTemplateXML ( ) : S t r ing ;

5 func t i on getParameterXML ( ) : S t r ing ;

6

7 func t i on r eg i s t e rParamete r (paramName , paramValue ) ;

8

9 v i r t u a l func t i on readParameters ( ) : void ;

10 func t i on readParametersFromXML ( node : XMLNode) : boolean ;

11 func t i on rese tParameter s ( ) : void ;

12 func t i on getDefaultParameterValue ( key : S t r ing ) : Object ;

13 func t i on getParameterValue ( key : S t r ing ) : Object ;

14 func t i on setParameterValue ( key : Str ing , va lue : Object ) ;

15

16 v i r t u a l func t i on c lone ( ) : XMLSerial izableTask ;

17 }

The constructor takes as arguments the code name, descriptive name and type of the task.
The arguments are used when the task is serialized. The two next functions, getTemplateXML
and getParameterXML, are functions that work together in order to serialize the task. The
getTemplateXML function creates the <task/> tag structure and invokes getParameterXML to
fill in the <parameter/> tag structure. Figure A.1 on the next page illustrates the serialization
sequence. This process will create the XML template task data for a single task.
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Figure A.1: Sequence diagram of the serialization of a single task

The registerParameter function binds the parameter to the task, along with the default
value (the second argument). The function is able to automatically determine the value type
based on the default value, and this type is stored as well. Because the parameters are now
bound to the task, they will automatically be included when a task template of the task is
created.

The readParameters function is an application of the Template Method pattern andTemplate Method
pattern

will be invoked whenever the task is created, or the parameters have been modified or reset.
Reading the parameter values here will then ensure that the parameters are always up to
date.

We will not go into further detail about the next functions (readParametersFromXML,
resetParameters, getDefaultParameterValue, getParameterValue and setParameterValue),
which are helper functions concerned with the parameter values of tasks.

The clone function is an application of the Prototype pattern, [33, p. 117]. It is aPrototype pattern

virtual function that instantiates a new object of the current object, i.e. returns a clone
of the object. It is possible for the caller to clone the object without actually knowing the
specific type of object, but simply that it is a subtype of XMLSerializableTask. We use
an intermediate data format to represent the behavior trees and use a cloning operation to
instantiate the different tasks of the tree. This approach to instantiating and reusing behavior
trees is also proposed in [42, sec. 5.4.6].

A concrete implementation of XMLSerializableTask is in GoToAction. GoToAction is
the implementation of the Go To action, and its implementation shows how tasks are initiated
and how they read their parameters. An abbreviated version of the GoToAction class is shown
in the code listing below.

1 c l a s s GoToAction extends XMLSerial izableTask {
2 var d e s t i n a t i o n : Vector3 ;

3 var acceptab l eDi s tance : f l o a t = 0 . 1 ;

4

5 func t i on GoToAction ( ) {
6 super ( ” go toac t i on ” , ”Go To” , ” ac t i on ” ) ;
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7

8 reg i s t e rParamete r ( ”waypoint” , ”NW Waypoint” ) ;

9 r eg i s t e rParamete r ( ” acceptab l eDi s tance ” , 0 . 1 ) ;

10 }
11

12 v i r t u a l func t i on readParameters ( ) {
13 d e s t i n a t i o n = getPosFromString ( getParameterValue ( ”waypoint” ) ) ;

14 acceptab l eDi s tance = getParameterValue ( ” acceptab l eDi s tance ” ) ;

15 }
16

17 v i r t u a l func t i on execute ( agent : Agent ) {
18 // . . .

19 }
20

21 v i r t u a l func t i on a c t i v a t e ( agent : Agent ) {
22 agent . animation . CrossFade ( ”run” ) ;

23 }
24

25 v i r t u a l func t i on d ea c t i v a t e ( agent : Agent ) {
26 agent . animation . CrossFade ( ” i d l e ” ) ;

27 }
28

29 v i r t u a l func t i on c lone ( ) : XMLSerial izableTask {
30 re turn new GoToAction ( ) ;

31 }
32 }

The constructor invokes the constructor of the super class (i.e. XMLSerializableTask)
and provides as arguments the code name, name and type of the task. It then registers
the two parameters, “waypoint” and “acceptableDistance”, that the task requires. In the
readParameters function it parses and reads the parameters of the task and stores them in
local field variables.

The activate and deactivate functions are invoked when the task is initiated and when
it is terminated, respectively. Here, we utilize the animation system to fade the animation
to the “run” animation in activate and fade to the “idle” animation in deactivate.

The deserialization of XML data into behavior trees in the responsibility of the BehaviorManager
class. To deserialize data to a behavior tree, BehaviorManager needs to know which types of
tasks are available. It needs to know the different types of tasks such that it can instantiate
them to create the object hierarchy of the behavior tree. In the following code listing we
create an instance of the BehaviorManager class and use it to register several different types
of tasks.

1 var behaviorManager = new BehaviorManager ( ) ;

2

3 behaviorManager . r e g i s t e r B e h a v i o r (new Sequence ( ) ) ;

4 behaviorManager . r e g i s t e r B e h a v i o r (new S e l e c t o r ( ) ) ;

5 behaviorManager . r e g i s t e r B e h a v i o r (new P a r a l l e l ( ) ) ;

6

7 behaviorManager . r e g i s t e r B e h a v i o r (new GoToAction ( ) ) ;

8 behaviorManager . r e g i s t e r B e h a v i o r (new WaitAction ( ) ) ;
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9 behaviorManager . r e g i s t e r B e h a v i o r (new PrintAct ion ( ) ) ;

10 behaviorManager . r e g i s t e r B e h a v i o r (new PlayAnimation ( ) ) ;

After this, the behaviorManager object knows these tasks and is able to clone them to
instantiate new objects using the clone function in XMLSerializableTask. To instantiate
a new task, we just call the createBehavior function, which takes a task code name as
argument. It will then look-up the task corresponding to the code name and return the
object created by that tasks clone function.

However, before we know the code name of the tasks of the XML data, we need to read
and parse it. For this purpose, we use the XMLReader class, which is a custom built XML
parser. It has a function called read which takes XML data as argument and returns the
corresponding hierarchy of XMLNode objects holding the generic behavior tree data. This
hierarchy of XMLNode objects is then traversed, and for each object the corresponding task
is instantiated by cloning and the parameters are read using the readParametersFromXML

function from XMLSerializableTask. This traversal is recursive, and the hierarchical struc-
ture is maintained throughout the recursion. When the recursion ends, we will have created
and combined all the tasks of the behavior tree as well as assigning arguments to all their
parameters. Figure A.2 illustrates the entire process.

Figure A.2: Sequence diagram of the process of deserialization
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The createBehaviorTreeFromXML function has the overall responsibility for deserializa-
tion. It invokes the XMLReader to parse the inputted XML, creates the root task and starts
the recursive createBehaviorTree function. It traverses the XMLNode structure recursively,
for each object instantiating the corresponding XMLSerializableTask object (through the
createBehaviorFromXML and createBehavior functions) and inserts them into the behavior
tree.

If we know that the parameter arguments of a behavior tree has been modified, but the
structure of the tree has not, we do not need to build the object tree from scratch but can
simply update the parameters. This could be done exactly as discussed above, only without
calling createBehavior to instantiate new objects.

Just like we registered tasks, we can also register agents (or agent types) with the
BehaviorManager. This can be used to bind available tasks to that agent. This way, the
BehaviorManager can easily collect and send all template task data related to an agent sim-
ply by being provided the identification key of that agent (or agent type). An example hereof
is shown below.

1 behaviorManager . reg i s terAgentType ( ” robot ” ) ;

2 behaviorManager . bindBehaviorToAgent ( ” robot ” , ” gotoac t i on ” ) ;

3 behaviorManager . bindBehaviorToAgent ( ” robot ” , ” wa i tac t i on ” ) ;

4 behaviorManager . bindBehaviorToAgent ( ” robot ” , ” p r i n t a c t i o n ” ) ;

5 behaviorManager . bindBehaviorToAgent ( ” robot ” , ” playanimation ” ) ;

A.2 Unity web communication

The Unity Web Player has built-in support for communication between the Web Player and
the web page it is embedded in. That is, Unity can invoke JavaScript functions on the web
page and the web page can invoke functions defined in Unity. In this section we will look at
how to implement this communication.

Unity has a function, Application.ExternalCall, for making external calls, i.e. to call
a function on the web page on which the Web Player is embedded. It takes as argument the
name of the function to call on the web page and a list of additional arguments.

1 Appl i ca t ion . Exte rna lCa l l ( webFunctionName , [ arguments ] ) ; // Do ex t e rna l c a l l

Executing the above code will result in calling the web page function which signature consists
of the name defined by webFunctionName and the arguments defined by arguments. If no
function matches the signature, no function is called. Suppose we have the following function
defined in the web page embedding the Web Player.

1 <s c r i p t type=” text / j a v a s c r i p t ” language=” j a v a s c r i p t ”>

2 <!−−
3 func t i on debugPrint ( phase , type , t ex t ) {
4 // Implementation

5 }
6 −−>
7 </s c r i p t >
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We could then call that web-based JavaScript function by using the following code from
within Unity.

1 Appl i ca t ion . Exte rna lCa l l ( debugPrint , ” load ” , 2 , ” Pars ing complete ” ) ;

As the external call matches the function signature of the debugPrint function this function
will get called. The arguments for the function will be the string “load” as the phase

variable, the integer 2 as type and the string “Parsing complete” as text. Suppose we have
the following function in a game object called “Loader” inside the Unity object:

1 func t i on loadBehavior ( param : St r ing ) {
2 // Implementation

3 }

If we want to call the function from the web page we need to call the SendMessage function
of the Unity Web Player object in the web page. This function takes three arguments: the
name of a game object in the Unity scene, the name of a function within that object and a
single string to hold arbitrary data.

1 unityObject . SendMessage ( unityObjectName , unityFunctionName , data ) ;

Specifically, we could use the code below:

1 unityObject . SendMessage ( ”Loader” , ” loadBehavior ” , ”<behavior ></behavior>” ) ;
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A.3 Design of other editor implementations

Figure A.3: User interface of the “ScriptEase Pattern Builder”, [7]
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Figure A.4: User interface of the “misBeHavinG” behavior tree tool, [27, p. 36]

Figure A.5: User interface for the “Behavior Tree Editor” for the “Visual3D” game engine,

[5]
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Figure A.6: User interface of the “Behave” behavior tree editor integrated into Unity, [1]

A.4 Code

This section contains code listings of some of the major classes referenced to in thesis. For
the full code and the other resources refers to section 1.5.

A.4.1 Task

1 #pragma s t r i c t

2

3 enum TaskStatus {SUCCESS, FAILURE, RUNNING, ERROR} ;

4

5 c l a s s Task extends Sc r ip tab l eOb j e c t {
6

7 v i r t u a l func t i on dec ide ( agent : Agent ) : boolean {
8 re turn true ;

9 }
10

11 v i r t u a l func t i on execute ( agent : Agent ) : TaskStatus {
12 re turn TaskStatus .SUCCESS;

13 }
14
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15 v i r t u a l func t i on a c t i v a t e ( agent : Agent ) : void {
16

17 }
18

19 v i r t u a l func t i on de a c t i v a t e ( agent : Agent ) : void {
20

21 }
22

23 v i r t u a l func t i on i s L e a f ( ) : boolean {
24 re turn true ;

25 }
26

27 v i r t u a l func t i on toS t r i ng ( ) : S t r ing {
28 re turn ge tPre t tyPr in t (0 ) ;

29 }
30

31 v i r t u a l p rotec t ed func t i on ge tPre t tyPr in t ( indent : i n t ) : S t r ing {
32 re turn St r ing ( ”−” [ 0 ] , indent −1) + ”Task” ;

33 }
34

35 }

Listing A.1: ../code/unity/BehaviorTree/Task.js

A.4.2 XMLSerializableTask

1 #pragma s t r i c t

2

3 c l a s s XMLSerial izableTask extends Task {
4 protec ted var xmlCodeName : S t r ing ;

5 protec t ed var xmlName : S t r ing ;

6 protec t ed var xmlType : S t r ing ;

7 protec t ed var params : Boo . Lang . Hash ;

8

9 func t i on XMLSerial izableTask ( codeName : Str ing , name : Str ing , type : S t r ing

) {
10 xmlCodeName = codeName ;

11 xmlName = name ;

12 xmlType = type ;

13 params = new Boo . Lang . Hash ( ) ;

14 }
15

16 func t i on getTemplateXML ( ) : S t r ing {
17 re turn ”<task codename=\”” + getCodeName ( ) + ”\” name=\”” + getName ( ) + ”

\” type=\”” + getType ( ) + ”\”>\n” +

18 getParameterXML ( ) +

19 ”</” + getCodeName ( ) + ”>” ;

20 }
21

22 func t i on getParameterXML ( ) : S t r ing {
23 var s : S t r ing = ”” ;
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24 f o r (p in params ) {
25 var param : Parameter = p . Value ;

26 s += ”<parameter name=\”” + p . Key + ”\” value−type=\”” + param . valueType

+ ”\” d e f a u l t =\”” + param . value + ”\” />\n” ;

27 }
28 re turn s ;

29 }
30

31 func t i on readParametersFromXML ( node : XMLNode) : boolean {
32 f o r (p in params ) {
33 var param : Parameter = p . Value ;

34 param . value = readValueAttrFromNode (p . Key , param . valueType , node ) ;

35 }
36 readParameters ( ) ;

37 re turn t rue ;

38 }
39

40 func t i on rese tParameter s ( ) {
41 f o r (p in params ) {
42 var param : Parameter = p . Value ;

43 param . value = param . de fau l tVa lue ;

44 }
45 readParameters ( ) ;

46 }
47

48 v i r t u a l func t i on readParameters ( ) {
49 // p lace ho lder

50 }
51

52 func t i on getDefaultParameterValue ( key : S t r ing ) : Object {
53 i f ( params . ContainsKey ( key ) ) {
54 re turn params [ key ] . de fau l tVa lue ;

55 }
56 U t i l s . debugPrint ( ” load ” , DebugType .ERROR, ” getDefaultParameterValue : No

parameter with key ’ ” + key +” ’ ” ) ;

57 re turn n u l l ;

58 }
59

60 func t i on getParameterValue ( key : S t r ing ) : Object {
61 i f ( params . ContainsKey ( key ) ) {
62 re turn params [ key ] . va lue ;

63 }
64 U t i l s . debugPrint ( ” load ” , DebugType .ERROR, ” getParameterValue : No parameter

with key ’ ” + key +” ’ ” ) ;

65 re turn n u l l ;

66 }
67

68 func t i on setParameterValue ( key : Str ing , va lue : Object ) {
69 i f ( params . ContainsKey ( key ) ) {
70 params [ key ] . va lue = value ;

71 re turn ;

72 }
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73 U t i l s . debugPrint ( ” load ” , DebugType .ERROR, ” setParameterValue : No parameter

with key ’ ” + key +” ’ ” ) ;

74 }
75

76 func t i on reg i s t e rParamete r (paramName , paramValue ) {
77 params [ paramName ] = new Parameter ( getValueTypeStr ing ( paramValue ) ,

paramValue ) ;

78 }
79

80 p r i v a t e func t i on getValueTypeStr ing ( va l ) : S t r ing {
81 var typeSt r ing : S t r ing = ”” ;

82 switch ( typeo f ( va l ) ) {
83 case System . Int32 : typeSt r ing = ” i n t e g e r ” ; break ;

84 case System . S i n g l e : typeSt r ing = ” f l o a t ” ; break ;

85 case System . St r ing : typeSt r ing = ” s t r i n g ” ; break ;

86 case System . Boolean : typeSt r ing = ” boolean ” ; break ;

87 case UnityEngine . Vector2 : typeSt r ing = ” vector2 ” ; break ;

88 case UnityEngine . Vector3 : typeSt r ing = ” vector3 ” ; break ;

89 case UnityEngine . Vector4 : typeSt r ing = ” vector4 ” ; break ;

90 d e f a u l t : typeSt r ing = ”NA” ; U t i l s . debugPrint ( ”BehaviorToXML” ,

DebugType .ERROR, ” getValueTypeStr ing unknown type o f va lue : ” +

typeo f ( va l ) ) ; break ;

91 }
92 re turn typeSt r ing ;

93 }
94

95 p r i v a t e func t i on readValueAttrFromNode ( key : Str ing , valueType : Str ing ,

node : XMLNode) {
96 var va l ;

97 switch ( valueType ) {
98 case ” i n t ” : va l = node . getIntFromAttr ( key ) ; break ;

99 case ” f l o a t ” : va l = node . getFloatFromAttr ( key ) ; break ;

100 case ” s t r i n g ” : va l = node . getStr ingFromAttr ( key ) ; break ;

101 case ” boolean ” : va l = node . getBoolFromAttr ( key ) ; break ;

102 case ” vector2 ” : va l = node . getVector2FromAttr ( key ) ; break ;

103 case ” vector3 ” : va l = node . getVector3FromAttr ( key ) ; break ;

104 case ” vector4 ” : va l = node . getVector4FromAttr ( key ) ; break ;

105 d e f a u l t : U t i l s . debugPrint ( ”XMLToBehavior” , DebugType .ERROR, ”

readValueAttrFromNode unknown type o f va lue : ” + valueType ) ; break ;

106 }
107 re turn va l ;

108 }
109

110 v i r t u a l func t i on getCodeName ( ) : S t r ing { r e turn xmlCodeName ; }
111 v i r t u a l func t i on getName ( ) : S t r ing { r e turn xmlName ; }
112 v i r t u a l func t i on getType ( ) : S t r ing { r e turn xmlType ; }
113

114 v i r t u a l p rotec t ed func t i on ge tPre t tyPr in t ( indent : i n t ) : S t r ing {
115 re turn getName ( ) ;

116 }
117

118 v i r t u a l func t i on c lone ( ) : XMLSerial izableTask {
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119 re turn n u l l ;

120 }
121 }

Listing A.2: ../code/unity/BehaviorTree/XMLSerializableTask.js

A.4.3 CompositeTask

1

2 c l a s s CompositeTask extends XMLSerial izableTask {
3

4 pub l i c var components : Array ;

5 protec t ed var runningTask : Task ;

6

7 func t i on CompositeTask ( codeName : Str ing , name : Str ing , type : S t r ing ) {
8 super ( codeName , name , type ) ;

9 components = new Array ( ) ;

10 runningTask = n u l l ;

11 }
12

13 v i r t u a l func t i on dec ide ( agent : Agent ) : boolean {
14 // Accepts i f at l e a s t one ch i l d accept s

15 f o r ( var task : Task in components ) {
16 i f ( task . dec ide ( agent ) ) {
17 re turn true ;

18 }
19 }
20 }
21

22 v i r t u a l func t i on execute ( agent : Agent ) : TaskStatus {
23 re turn TaskStatus .ERROR; // cannot be run on i t s own

24 }
25

26 v i r t u a l func t i on executeChi ld ( task : Task , agent : Agent ) {
27 // I f the executed task i s d i f f e r e n t from the running task ensure that the

running task i s g r a c e f u l l y deac t iva ted

28 i f ( task != runningTask ) {
29 i f ( runningTask ) runningTask . d e ac t i v a t e ( agent ) ;

30 task . a c t i v a t e ( agent ) ;

31 }
32

33 var s t a t u s : TaskStatus = task . execute ( agent ) ;

34

35 // I f the task f i n i s h e d execut ing , d ea c t i va t e i t . Otherwise , f l a g i t as

the cu r r en t l y running task

36 i f ( s t a t u s != TaskStatus .RUNNING) {
37 task . d e ac t i v a t e ( agent ) ;

38 runningTask = n u l l ;

39 } e l s e {
40 runningTask = task ;

41 }
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42

43 re turn s t a t u s ;

44 }
45

46 v i r t u a l func t i on addComponent ( c : Task ) {
47 components . Add( c ) ;

48 }
49

50 v i r t u a l func t i on removeComponent ( c : Task ) {
51 components . Remove( c ) ;

52 }
53

54 v i r t u a l func t i on i s L e a f ( ) : boolean {
55 re turn f a l s e ;

56 }
57

58 v i r t u a l p rotec t ed func t i on ge tPre t tyPr in t ( indent : i n t ) : S t r ing {
59 indent++;

60 var s : S t r ing = getName ( ) + ”\n” ;

61 f o r ( var c h i l d : Task in components ) {
62 s += Str ing ( ”−” [ 0 ] , indent ) + ” ” + c h i l d . ge tPre t tyPr in t ( indent ) + ”\n” ;

63 }
64 re turn s ;

65 }
66 }

Listing A.3: ../code/unity/BehaviorTree/CompositeTask.js

A.4.4 Sequence

1

2 c l a s s Sequence extends CompositeTask {
3

4 func t i on Sequence ( ) {
5 super ( ” sequence ” , ” Sequence ” , ” composite ” ) ;

6 }
7

8 v i r t u a l func t i on dec ide ( agent : Agent ) : boolean {
9 // We only need to va l i d a t e the o v e r a l l sequence as CompositeTask do not

va l i d a t e the dec ide ( ) o f running ta sk s ( as per the SPORE a r t i c l e )

10 // Accepts i f the f i r s t c h i l d accept s

11 f o r ( var task : Task in components ) {
12 re turn task . dec ide ( agent ) ;

13 }
14 }
15

16 v i r t u a l func t i on execute ( agent : Agent ) {
17 // I t e r a t e through the ch i l d r en and pick the one that :

18 // 1) I s a l r eady running

19 // 2) I s not running but whose dec ide ( ) func t i on accept s

20 f o r ( var task : Task in components ) {
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21 // I f the re i s a running task , sk ip ch i l d r en un t i l we reach the running

task

22 // I f the re i s not a running task , sk ip ch i l d r en who do not accept

23 i f ( ( runningTask && task != runningTask ) | | ! task . dec ide ( agent ) )

cont inue ; // Skip non−running non−accept ing ta sk s

24

25 // At t h i s po int in execut ion we have e i t h e r the running task or a non−
running but accept ing task

26

27 var s t a t u s : TaskStatus = executeChi ld ( task , agent ) ;

28

29 // I f the task e i t h e r f a i l s or cont inues to run we are f i n i s h e d .

Otherwise we cont inue to the next ch i l d .

30 i f ( ( s t a t u s == TaskStatus .FAILURE) | | ( s t a t u s == TaskStatus .RUNNING) ) {
31 re turn s t a t u s ;

32 }
33

34 }
35

36 re turn TaskStatus .SUCCESS;

37 }
38

39 v i r t u a l func t i on c lone ( ) : XMLSerial izableTask {
40 re turn new Sequence ( ) ;

41 }
42

43 }

Listing A.4: ../code/unity/BehaviorTree/Sequence.js

A.4.5 Selector

1

2 c l a s s S e l e c t o r extends CompositeTask {
3

4 func t i on S e l e c t o r ( ) {
5 super ( ” s e l e c t o r ” , ” S e l e c t o r ” , ” composite ” ) ;

6 }
7

8 v i r t u a l func t i on execute ( agent : Agent ) {
9 f o r ( var task : Task in components ) {

10 i f ( runningTask ) { // I f we have a cu r r en t l y running task

we . . .

11 i f ( task != runningTask ) cont inue ; // sk ip ch i l d r en un t i l we reach

the running task

12 } e l s e { // I f we do not have a running task we . . .

13 i f ( ! task . dec ide ( agent ) ) cont inue ; // sk ip ch i l d r en who do not

accept

14 }
15

16 // At t h i s po int in execut ion we have e i t h e r the running task or a non−
running but accept ing task
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17

18 var s t a t u s : TaskStatus = executeChi ld ( task , agent ) ;

19

20 i f ( s t a t u s != TaskStatus .FAILURE) return s t a t u s ;

21 }
22

23 re turn TaskStatus .FAILURE;

24 }
25

26 v i r t u a l func t i on c lone ( ) : XMLSerial izableTask {
27 re turn new S e l e c t o r ( ) ;

28 }
29

30 }

Listing A.5: ../code/unity/BehaviorTree/Selector.js

A.4.6 Parallel

1 #pragma s t r i c t

2

3 c l a s s P a r a l l e l extends CompositeTask {
4 var succeedOnOne : boolean = f a l s e ;

5 var failOnOne : boolean = f a l s e ;

6

7 func t i on P a r a l l e l ( ) {
8 super ( ” p a r a l l e l ” , ” P a r a l l e l ” , ” composite ” ) ;

9 }
10

11 v i r t u a l func t i on execute ( agent : Agent ) {
12 var a l lSucceeded : boolean = true ;

13 var a l l F a i l e d : boolean = true ;

14 var isRunning : boolean = f a l s e ;

15

16 f o r ( var task : Task in components ) {
17 var s t a t u s : TaskStatus = task . execute ( agent ) ;

18

19 i f ( s t a t u s == TaskStatus .SUCCESS) {
20 i f ( succeedOnOne ) re turn TaskStatus .SUCCESS;

21 a l l F a i l e d = f a l s e ;

22 } e l s e i f ( s t a t u s == TaskStatus .FAILURE) {
23 // i f ( failOnOne | | ! succeedOnOne ) re turn TaskStatus .FAILURE;

24 i f ( failOnOne ) re turn TaskStatus .FAILURE;

25 a l lSucceeded = f a l s e ;

26 } e l s e i f ( s t a t u s == TaskStatus .ERROR) {
27 re turn TaskStatus .ERROR;

28 } e l s e i f ( s t a t u s == TaskStatus .RUNNING) {
29 a l l F a i l e d = f a l s e ;

30 a l lSucceeded = f a l s e ;

31 isRunning = true ;

32 }
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33 }
34

35 i f ( isRunning ) re turn TaskStatus .RUNNING;

36 i f ( a l lSucceeded ) re turn TaskStatus .SUCCESS;

37 i f ( a l l F a i l e d ) re turn TaskStatus .FAILURE;

38 re turn TaskStatus .ERROR;

39 }
40

41 v i r t u a l func t i on c lone ( ) : XMLSerial izableTask {
42 re turn new P a r a l l e l ( ) ;

43 }
44

45 }

Listing A.6: ../code/unity/BehaviorTree/Parallel.js

A.4.7 PrioritizedList

1 #pragma s t r i c t

2

3 c l a s s P r i o r i t i z e d L i s t extends CompositeTask {
4

5 func t i on P r i o r i t i z e d L i s t ( ) {
6 super ( ” p r i o r i t i z e d l i s t ” , ” P r i o r i t i z e d L i s t ” , ” composite ” ) ;

7 }
8

9 v i r t u a l func t i on execute ( agent : Agent ) : TaskStatus {
10 // I t e r a t e through the l i s t and pick the f i r s t task that i s :

11 // 1) a task with h igher p r i o r i t y than the a c t i v e task whose dec ide ( )

accept s

12 // 2) the a c t i v e task ( without c a l l i n g dec ide ( ) )

13 f o r ( var task : Task in components ) {
14 i f ( task != runningTask && ! task . dec ide ( agent ) ) cont inue ;

15

16 var s t a t u s : TaskStatus = executeChi ld ( task , agent ) ;

17 i f ( s t a t u s != TaskStatus .FAILURE) {
18 re turn s t a t u s ;

19 }
20 }
21

22 re turn TaskStatus .SUCCESS;

23 }
24

25 v i r t u a l func t i on c lone ( ) : XMLSerial izableTask {
26 re turn new P r i o r i t i z e d L i s t ( ) ;

27 }
28

29 }

Listing A.7: ../code/unity/BehaviorTree/PrioritizedList.js
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A.4.8 Decorator

1

2 c l a s s TaskDecorator extends CompositeTask {
3 protec ted var decoratedTask : Task = n u l l ;

4

5 func t i on TaskDecorator ( codeName : Str ing , name : Str ing , type : S t r ing ) {
6 super ( codeName , name , type ) ;

7 }
8

9 v i r t u a l func t i on addComponent ( task : Task ) {
10 i f ( decoratedTask ) Debug . Log ( ” [ TaskDecorator : : addComponent ] WARNING:

Overwrit ing a l r eady decorated task ! ” ) ;

11 components . Clear ( ) ;

12 components . Add( task ) ;

13 decoratedTask = task ;

14 }
15

16 v i r t u a l func t i on execute ( agent : Agent ) {
17 i f ( ! decoratedTask ) {
18 Debug . Log ( ” [ TaskDecorator : : execute ] ERROR: No decorated task ! ” ) ;

19 re turn TaskStatus .ERROR;

20 }
21 re turn decoratedTask . execute ( agent ) ;

22 }
23 }

Listing A.8: ../code/unity/BehaviorTree/TaskDecorator.js

A.4.9 BehaviorManager

1

2 c l a s s BehaviorManager {
3

4 p r i v a t e var behav ior s : Boo . Lang . Hash ;

5 p r i v a t e var agentTypes : Boo . Lang . Hash ;

6

7 func t i on BehaviorManager ( ) {
8 behav io r s = new Boo . Lang . Hash ( ) ;

9 agentTypes = new Boo . Lang . Hash ( ) ;

10

11 r e g i s t e r B e h a v i o r ( Sequence ( ) ) ;

12 r e g i s t e r B e h a v i o r ( S e l e c t o r ( ) ) ;

13 r e g i s t e r B e h a v i o r ( P a r a l l e l ( ) ) ;

14 r e g i s t e r B e h a v i o r ( P r i o r i t i z e d S e q u e n c e ( ) ) ;

15 r e g i s t e r B e h a v i o r ( P r i o r i t i z e d S e l e c t o r ( ) ) ;

16

17 r e g i s t e r B e h a v i o r ( GoToAction ( ) ) ;

18 r e g i s t e r B e h a v i o r ( WaitAction ( ) ) ;

19 r e g i s t e r B e h a v i o r ( Pr intAct ion ( ) ) ;

20 r e g i s t e r B e h a v i o r ( PlayAnimation ( ) ) ;
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21 }
22

23 func t i on reg i sterAgentType ( agentType : S t r ing ) {
24 i f ( agentTypes . ContainsKey ( agentType ) ) {
25 U t i l s . debugPrint ( ” load ” , DebugType .WARNING, ” ’ ” + agentType +” ’ agent

type a l r eady r e g i s t e r e d ” ) ;

26 re turn ;

27 }
28 agentTypes [ agentType ] = new Array ( ) ;

29 }
30

31 func t i on bindBehaviorToAgent ( agentType : Str ing , behavior : S t r ing ) {
32 i f ( ! agentTypes . ContainsKey ( agentType ) ) {
33 U t i l s . debugPrint ( ” load ” , DebugType .WARNING, ” ’ ” + agentType +” ’ agent

type not r e g i s t e r e d ” ) ;

34 re turn ;

35 }
36 i f ( ! behav ior s . ContainsKey ( behavior ) ) {
37 U t i l s . debugPrint ( ” load ” , DebugType .WARNING, ” ’ ” + behavior +” ’ behavior

not r e g i s t e r e d ” ) ;

38 re turn ;

39 }
40 var a r r : Array = agentTypes [ agentType ] ;

41 a r r . Add( behavior ) ;

42 }
43

44 func t i on pr intAgentBehaviors ( agentType : S t r ing ) {
45 f o r ( var behavior in agentTypes [ agentType ] ) {
46 Debug . Log ( ” Behavior : ” + behavior ) ;

47 }
48 }
49

50 func t i on r e g i s t e r B e h a v i o r ( xmlTask : XMLSerial izableTask ) {
51 behav io r s [ xmlTask . getCodeName ( ) ] = xmlTask ;

52 }
53

54 func t i on createBehav io r ( codename : S t r ing ) : XMLSerial izableTask {
55 i f ( behav io r s . ContainsKey ( codename ) ) {
56 re turn behav ior s [ codename ] . c l one ( ) ;

57 }
58 U t i l s . debugPrint ( ” load ” , DebugType .WARNING, ”No behavior with code name ’ ”

+ codename +” ’ ” ) ;

59 re turn n u l l ;

60 }
61

62 func t i on createBehaviorFromXML ( node : XMLNode) : XMLSerial izableTask {
63 var newTask : XMLSerial izableTask = createBehav ior ( node . tagName ) ;

64 i f ( newTask ) newTask . readParametersFromXML ( node ) ;

65 re turn newTask ;

66 }
67

68 func t i on createBehaviorTreeFromXML ( xmlData : S t r ing ) : CompositeTask {
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69 U t i l s . debugPrint ( ” load ” , DebugType . INFO, ”Reading and par s ing XML and

bu i l d i ng the behavior t r e e . . . ” ) ;

70 var par s e r : XMLReader = XMLReader ( ) ;

71 var node : XMLNode = par s e r . read ( xmlData ) ;

72

73 var behavior : CompositeTask = new Sequence ( ) ;

74 createBehav iorTree ( node , behavior ) ;

75

76 U t i l s . debugPrint ( ” load ” , DebugType . INFO, ” Behavior Tree loaded ” ) ;

77

78 re turn behavior ;

79 }
80

81 p r i v a t e func t i on createBehav iorTree ( node : XMLNode, treeNode : CompositeTask

) : CompositeTask {
82 var task : Task = n u l l ;

83 var newComposite : CompositeTask = treeNode ;

84

85 U t i l s . debugPrint ( ” load ” , DebugType . INFO, ” Creat ing ’ ” + node . tagName + ” ’

behavior . . . ” ) ;

86

87 task = createBehaviorFromXML ( node ) ;

88

89 // I f we c rea ted a new task

90 i f ( task ) {
91 // Add the task to the parent node

92 treeNode . addComponent ( task ) ;

93 // I f the task i s a composite task , s e t i t as the parent f o r the

r e cu r s i on

94 i f ( ! task . i s L e a f ( ) ) {
95 newComposite = task ;

96 }
97 }
98

99 f o r ( var n : XMLNode in node . c h i l d r e n ) {
100 createBehav iorTree (n , newComposite ) ;

101 }
102

103 re turn treeNode ;

104 }
105

106 }

Listing A.9: ../code/unity/BehaviorTree/BehaviorManager.js
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